This paper deals with the segmentation problem of cervical cell images. Knowing that the malignity criteria appear on the morphology of the core and the cytoplasm of each cell, then, the goal of this segmentation is to separate each cell on its component, that permits to analyze separately their morphology (size and shape) in the recognition step, for deducing decision about the malignity of each cell. For that. we use a multifractal algorithm based on the computation of the singularity exponent on each point of the image. For increasing the quality of the segmentation, we propose to add an optimization step based on genetic algorithms. The proposed processing has been tested on several images. Herein, we present some results obtained by two cervical cell images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.