The application of chemical dispersants aims to stimulate microbial oil degradation by increasing the bioavailability of oil compounds. Overall, nine microcosms were prepared (three for each treatment) using treated sediment with (i) dispersant (d: 25 ppm), (ii) oil (500 ppm), and (iii) with oil + dispersant (500: 25 ppm), respectively. There are also three control microcosms containing only water and sediment without petroleum. Then, we analyzed bacterial abundance, total hydrocarbon, biological oxygen demand (BOD5), and chemical oxygen demand (COD) in each microcosm. Bacterial response density was significantly affected after 40 days of exposure; it was higher in the control microcosm and d (> 24.103 cell/l) than in the other treatments. The index of total hydrocarbons was equal to 53 mg/kg dw in oil and 56 mg/kg dw in oil + dispersant. The higher BOD5 found in oil and in oil + d shows the increased amount of oxygen consumed, which indicates enhanced bacterial activity. Microcosms treated with dispersant had higher COD than the others, but the dispersant did not stimulate microbial hydrocarbon degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.