Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.
The mentality towards cleanliness, the sense of responsibility towards properly managing waste, as well as public concerns on the implications of not separating waste for recycling are critically lacking. Besides widespread of open dumping and illegal dumping, landfill sites in Malaysia are in dire state while source separation for recycling remain minimal despite the dominance of recyclable materials in the waste composition. The historical discussion on the solid waste management policy and plan strategies assesses Malaysian solid waste management needs to set realistic perspective for solid waste management particularly in source separation and recycling. Transformation of primitive solid waste management policy and plan strategies resulted to major changes in the system and rigorous implementation of mandatory source separation through Act 672. A two-pronged strategy of federalization and privatization is formally implemented in eight states of Peninsular Malaysia, Federal Territory of Kuala Lumpur, and Putrajaya. In line with the government's effort to promote sustainable solid waste management services, SWCorp Malaysia implemented SWCorp Strategic Plan 2014-2020, which focuses on (1) mindset, (2) behavior and culture, (3) collaboration and synergy, (4) policy and regulations, (5) organizational capacity, (6) technology system and facilities, (7) law enforcement, and (8) delivery system. One of the most critical challenges in source separation and recycling practice is the public attitude towards making source separation and recycling as a habit. Continuous commitment and participation from the government, private sector, and public are essential to achieve Malaysia's targeted recycling rate of 22% by 2020, with greater advancement towards a zero waste nation.
This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P < 0.05) compared to compost without EM. Although the Fe in compost with EM is much higher (P < 0.05) than in the compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction.
Growing global demand and utilization of fossil fuels has elevated wealth creation, increased adverse impacts of climate change from greenhouse gases (GHGs) emissions, and endangered public health. In most developing countries, biomass wastes, which include but are not limited to agricultural residues, are produced in large quantities annually. They are either inefficiently used or disposed of indiscriminately, which threatens the environment. It is possible to convert these wastes, through densification, into high-density and energy-efficient briquettes. Densification of biomass into briquettes presents a renewable energy option as an alternative to fossil fuels. This paper reviews biomass briquetting with reference to biomass resources, feedstock pre-processing, briquetting process parameters, briquetting technology, and briquettes quality evaluation parameters. The review also includes the economic aspect of briquetting relating to costs and feasibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.