Comparing Arabic to other languages, Arabic lacks large corpora for Natural Language Processing (Assiri, Emam & Al-Dossari, 2018; Gamal et al., 2019). A number of scholars depended on translation from one language to another to construct their corpus (Rushdi-Saleh et al., 2011). This paper presents how we have constructed, cleaned, pre-processed, and annotated our 20,0000 Gold Standard Corpus (GSC) AraCust, the first Telecom GSC for Arabic Sentiment Analysis (ASA) for Dialectal Arabic (DA). AraCust contains Saudi dialect tweets, processed from a self-collected Arabic tweets dataset and has been annotated for sentiment analysis, i.e.,manually labelled (k=0.60). In addition, we have illustrated AraCust’s power, by performing an exploratory data analysis, to analyse the features that were sourced from the nature of our corpus, to assist with choosing the right ASA methods for it. To evaluate our Golden Standard corpus AraCust, we have first applied a simple experiment, using a supervised classifier, to offer benchmark outcomes for forthcoming works. In addition, we have applied the same supervised classifier on a publicly available Arabic dataset created from Twitter, ASTD (Nabil, Aly & Atiya, 2015). The result shows that our dataset AraCust outperforms the ASTD result with 91% accuracy and 89% F1avg score. The AraCust corpus will be released, together with code useful for its exploration, via GitHub as a part of this submission.
With the rising growth of the telecommunication industry, the customer churn problem has grown in significance as well. One of the most critical challenges in the data and voice telecommunication service industry is retaining customers, thus reducing customer churn by increasing customer satisfaction. Telecom companies have depended on historical customer data to measure customer churn. However, historical data does not reveal current customer satisfaction or future likeliness to switch between telecom companies. The related research reveals that many studies have focused on developing churner prediction models based on historical data. These models face delay issues and lack timelines for targeting customers in real-time. In addition, these models lack the ability to tap into Arabic language social media for real-time analysis. As a result, the design of a customer churn model based on real-time analytics is needed. Therefore, this study offers a new approach to using social media mining to predict customer churn in the telecommunication field. This represents the first work using Arabic Twitter mining to predict churn in Saudi Telecom companies. The newly proposed method proved its efficiency based on various standard metrics and based on a comparison with the ground-truth actual outcomes provided by a telecom company.
A cyber-physical system (CPS) can be referred to as a network of cyber and physical components that communicate with each other in a feedback manner. A CPS is essential for daily activities and approves critical infrastructure as it provides the base for innovative smart devices. The recent advances in the field of explainable artificial intelligence have contributed to the development of robust intrusion detection modes for CPS environments. This study develops an Explainable Artificial Intelligence Enabled Intrusion Detection Technique for Secure Cyber-Physical Systems (XAIID-SCPS). The proposed XAIID-SCPS technique mainly concentrates on the detection and classification of intrusions in the CPS platform. In the XAIID-SCPS technique, a Hybrid Enhanced Glowworm Swarm Optimization (HEGSO) algorithm is applied for feature selection purposes. For intrusion detection, the Improved Elman Neural Network (IENN) model was utilized with an Enhanced Fruitfly Optimization (EFFO) algorithm for parameter optimization. Moreover, the XAIID-SCPS technique integrates the XAI approach LIME for better understanding and explainability of the black-box method for accurate classification of intrusions. The simulation values demonstrate the promising performance of the XAIID-SCPS technique over other approaches with maximum accuracy of 98.87%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.