Misregulated β-catenin responsive transcription (CRT) has been implicated in the genesis of various malignancies, including colorectal carcinomas, and it is a key therapeutic target in combating various cancers. Despite significant effort, successful clinical implementation of CRT inhibitory therapeutics remains a challenging goal. This is, in part, because of the challenge of identifying inhibitory compounds that specifically modulate the nuclear transcriptional activity of β-catenin while not affecting its cytoskeletal function in stabilizing adherens junctions at the cell membrane. Here, we report an RNAi-based modifier screening strategy for the identification of CRT inhibitors. Our data provide support for the specificity of these inhibitory compounds in antagonizing the transcriptional function of nuclear β-catenin. We show that these inhibitors efficiently block Wnt/β-catenin-induced target genes and phenotypes in various mammalian and cancer cell lines. Importantly, these Wnt inhibitors are specifically cytotoxic to human colon tumor biopsy cultures as well as colon cancer cell lines that exhibit deregulated Wnt signaling.high-throughput screen | oxazole | thiazole | thiazolidinedione | beta-catenin
SUMMARY
The Drosophila STAT transcription factor Stat92E regulates diverse functions, including organ development and stem cell self-renewal. However, the Stat92E functional effectors that mediate these processes are largely unknown. Here we show that chinmo is a cell-autonomous, downstream mediator of Stat92E that shares numerous functions with this protein. Loss of either gene results in malformed eyes and head capsules due to defects in eye progenitor cells. Hyperactivation of Stat92E or misexpression of Chinmo results in blood cell tumors. Both proteins are expressed in germline (GSCs) and cyst stem cells (CySCs) in the testis. While Stat92E is required for the self-renewal of both populations, chinmo is only required in CySCs, indicating that Stat92E regulates self-renewal in different stem cells through independent effectors. Like hyperactivated Stat92E, Chinmo misexpression in CySCs is sufficient to maintain GSCs non-autonomously. Chinmo is therefore a key effector of JAK/STAT signaling in a variety of developmental and pathological contexts.
During development, a small number of conserved signaling molecules regulate regional specification, in which uniform populations of cells acquire differences and ultimately give rise to distinct organs. In the Drosophila eye imaginal disc, Wingless (Wg) signaling defines the region that gives rise to head tissue. JAK/STAT signaling was thought to regulate growth of the eye disc but not pattern formation. However, we show that the JAK/STAT pathway plays an important role in patterning the eye disc: it promotes formation of the eye field through repression of the wg gene. Overexpression of the JAK/STAT activating ligand Unpaired in the eye leads to loss of wg expression and ectopic morphogenetic furrow initiation from the lateral margins. Conversely, tissue lacking stat92E, which cannot transduce JAK/STAT signals, is transformed from retinal tissue into head cuticle, a phenotype that is also observed with ectopic Wg signaling. Consistent with this, cells lacking stat92E exhibit ectopic wg expression. Conversely, wg is autonomously repressed in cells with hyperactivated Stat92E. Furthermore, we show that the JAK/STAT pathway regulates a small enhancer in the wg 3Ј cis genomic region. As this enhancer is devoid of Stat92E-binding elements, we conclude that Stat92E represses wg through another, as yet unidentified factor that is probably a direct target of Stat92E. Taken together, our study is the first to demonstrate a role for the JAK/STAT pathway in regional specification by acting antagonistically to wg.
Although the JAK/STAT pathway regulates numerous processes in vertebrates and invertebrates through modulating transcription, its functionally relevant transcriptional targets remain largely unknown. With one jak and one stat (stat92E), Drosophila provides a powerful system for finding new JAK/STAT target genes. Genome-wide expression profiling on eye discs in which Stat92E is hyperactivated, revealed 584 differentially regulated genes, including known targets domeless, socs36E, and wingless. Other differentially regulated genes (chinmo, lama, Mo25, Imp-L2, Serrate, Delta) were validated and may represent new Stat92E targets. Genetic experiments revealed that Stat92E cell-autonomously represses Serrate, which encodes a Notch ligand. Loss of Stat92E led to de-repression of Serrate in the dorsal eye, resulting in ectopic Notch signaling and aberrant eye growth there. Thus, our micro-array documents a new Stat92E target gene and a previously unidentified inhibitory action of Stat92E on Notch signaling. These data suggest that this study will be a useful resource for the identification of additional Stat92E targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.