Restricting availability of essential amino acids (EAAs) limits aminoacylation of tRNAs by their cognate EAAs and activates the nutrient-sensing kinase, general control nonderepressible 2 (GCN2). Activated GCN2 phosphorylates eukaryotic initiation factor 2 (eIF2), altering gene-specific translation and initiating a transcriptional program collectively described as the integrated stress response (ISR). Central GCN2 activation by EAA deprivation is also linked to an acute aversive feeding response. Dietary methionine restriction (MR) produces a well-documented series of physiological responses (increased energy intake and expenditure, decreased adiposity, and increased insulin sensitivity), but the role of GCN2 in mediating them is unknown. Using Gcn2−/− mice, we found that the absence of GCN2 had no effect on the ability of MR to reduce body weight or adiposity, increase energy intake and expenditure, increase hepatic transcription and release of fibroblast growth factor 21, or improve insulin sensitivity. Interestingly, hepatic eIF2 phosphorylation by MR was uncompromised in Gcn2−/− mice. Instead, protein kinase R–like endoplasmic reticulum (ER) kinase (PERK) was activated in both intact and Gcn2−/− mice. PERK activation corresponded with induction of the ISR and the nuclear respiratory factor 2 antioxidant program but not ER stress. These data uncover a novel glutathione-sensing mechanism that functions independently of GCN2 to link dietary MR to its metabolic phenotype.
Dietary methionine restriction (MR) produces a rapid and persistent remodeling of white adipose tissue (WAT), an increase in energy expenditure (EE), and enhancement of insulin sensitivity. Recent work established that hepatic expression of FGF21 is robustly increased by MR. Fgf21−/− mice were used to test whether FGF21 is an essential mediator of the physiological effects of dietary MR. The MR-induced increase in energy intake and EE and activation of thermogenesis in WAT and brown adipose tissue were lost in Fgf21−/− mice. However, dietary MR produced a comparable reduction in body weight and adiposity in both genotypes because of a negative effect of MR on energy intake in Fgf21−/− mice. Despite the similar loss in weight, dietary MR produced a more significant increase in in vivo insulin sensitivity in wild-type than in Fgf21−/− mice, particularly in heart and inguinal WAT. In contrast, the ability of MR to regulate lipogenic and integrated stress response genes in liver was not compromised in Fgf21−/− mice. Collectively, these findings illustrate that FGF21 is a critical mediator of the effects of dietary MR on EE, remodeling of WAT, and increased insulin sensitivity but not of its effects on hepatic gene expression.
Red onions and low doses of the flavonoid, quercetin, increase insulin sensitivity and improve glucose tolerance. We hypothesized that dietary supplementation with red onion extract (RO) would attenuate high fat diet (HFD)-induced obesity and insulin resistance similar to quercetin supplementation by increasing energy expenditure through a mechanism involving skeletal muscle mitochondrial adaptations. To test this hypothesis, C57BL/6J mice were randomized into four groups and fed either a low fat diet (LF), HFD (HF), HFD + quercetin (HF + Q), or HFD + RO (HF + RO) for 9 weeks. Food consumption and body weight and composition were measured weekly. Insulin sensitivity was assessed by insulin and glucose tolerance tests. Energy expenditure and physical activity were measured by indirect calorimetry. Skeletal muscle incomplete beta oxidation, mitochondrial number, and mtDNA-encoded gene expression were measured. Quercetin and RO supplementation decreased HFD-induced fat mass accumulation and insulin resistance (measured by insulin tolerance test) and increased energy expenditure; however, only HF + Q showed an increase in physical activity levels. Although quercetin and RO similarly increased skeletal muscle mitochondrial number and decreased incomplete beta oxidation, establishing mitochondrial function similar to that seen in LF, only HF + Q exhibited consistently lower mRNA levels of mtDNA-encoded genes necessary for complexes IV and V compared to LF. Quercetin- and RO-induced improvements in adiposity, insulin resistance, and energy expenditure occur through differential mechanisms, with quercetin-but not RO-induced energy expenditure being related to increases in physical activity. While both treatments improved skeletal muscle mitochondrial number and function, mtDNA-encoded transcript levels suggest that the antiobesogenic, insulin-sensitizing effects of purified quercetin aglycone, and RO may occur through differential mechanisms.
Objective Restricting dietary methionine to 0.17% produces a series of physiological responses through coordinated transcriptional effects in liver and adipose tissue. The goal of the present work was to determine the threshold concentrations above and below 0.17% at which the beneficial responses to 0.17% dietary methionine are preserved. Methods Diets were formulated to restrict methionine to different degrees, followed by evaluation of the transcriptional and physiological responses to the different diets. Results Restriction of dietary methionine to 0.25%, but not 0.34%, was partially effective in reproducing the metabolic phenotype produced by restriction of methionine to 0.17%, while restriction of methionine to 0.12% reproduced the responses produced by restriction to 0.17% but failed to support growth and caused excessive weight loss. Restriction beyond 0.12% initiated responses characteristic of essential amino acid deprivation including food aversion and rapid weight loss. Conclusions Restriction of dietary methionine to levels above 0.25% was without effect while restriction to levels below 0.12% produced responses characteristic of essential amino acid deprivation. In addition, although restriction of dietary methionine to 0.12% does not evoke essential amino acid deprivation responses, it provides insufficient methionine to support growth. The ideal range of dietary methionine restriction is from 0.17% to 0.25%.
Abstract:Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD)-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE) containing quercetin on subcutaneous (inguinal, IWAT) vs. visceral (epididymal, EWAT) white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 µg/day quercetin or high fat plus ROE containing 50 µg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.