Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified.
Mitochondria play a critical role in apoptosis, or programmed cell death, by releasing apoptogenic factors from the intermembrane space. This process, known as mitochondrial outer membrane permeabilization (MOMP), is tightly regulated by the Bcl-2 family proteins. Pro-apoptotic Bcl-2 family members, Bax and Bak, change their conformation when activated by BH3 domain-only proteins in the family and permeabilize the MOM, whereas pro-survival members inhibit permeabilization. The precise nature of the apoptotic pore in the MOM is unknown, but is probably lipidic. Furthermore, it has been realized that there is another layer of MOMP regulation by a protein factor termed the catalyst in the MOM in order for Bax/Bak to achieve efficient and complete membrane permeabilization. Mitochondrial dynamics do not affect MOMP directly, but seem closely coordinated with MOMP for swift protein efflux from mitochondria. This review will present current views on the molecular mechanisms and regulation of MOMP and conclude with recent developments in clinical applications based on the knowledge gleaned from the investigation.
Isoaspartate formation is a ubiquitous post-translation modification arising from spontaneous asparagine deamidation or aspartate isomerization. The formation of isoaspartate inserts a methylene group into the protein backbone, generating a "kink", and may drastically alter protein structure and function, thereby playing critical roles in a myriad of biological processes, human diseases, and protein pharmaceutical development. Herein, we report a chemo-enzymatic detection method for the isoaspartate protein, which in particular allows the affinity enrichment of isoaspartate-containing proteins. In the initial step, protein isoaspartate methyltransferase selectively converts isoaspartates into the corresponding methyl esters. Subsequently, the labile methyl ester is trapped by strong nucleophiles in aqueous solutions, such as hydrazines to form hydrazides. The stable hydrazide products can be analyzed by standard proteomic techniques, such as matrix-assisted laser desorption ionization and electrospray ionization mass spectrometry. Furthermore, the chemical trapping step allows us to introduce several tagging strategies for product identification and quantification, such as UV-vis and fluorescence detection through a dansyl derivative. Most significantly, the hydrazide product can be enriched by affinity chromatography using aldehyde resins, thus drastically reducing sample complexity. Our method hence represents the first technique for the affinity enrichment of isoaspartyl proteins and should be amendable to the systematic and comprehensive characterization of isoaspartate, particularly in complex systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.