Subjects performed the Brooks (1967) spatial and nonspatial memory tasks either while sitting or while maintaining a difficult standing balance position. The balance task disrupted spatial but not nonspatial memory performance. Balance steadiness during spatial and nonspatial memory conditions did not differ. These results suggest that cognitive spatial processing may rely on neural mechanisms that are also required for the regulation of posture.
Findings extend previous research into issues related to professionalism by exploring relationships between narrative, emotion and action in the context of written narratives of most memorable dilemmas. We encourage medical educators to help students construct coherent and emotionally integrated narratives to make sense of negative professionalism dilemmas.
Findings extend previous research with nursing and medical students. Nurse educators should help students construct emotionally coherent narratives to make sense of their experiences, actions and identities and to better prepare them for future professionalism dilemmas.
Chick embryos are useful models for probing developmental mechanisms including those involved in organogenesis. In addition to classic embryological manipulations, it is possible to test the function of molecules and genes while the embryo remains within the egg. Here we define conditions for imaging chick embryo anatomy and for visualising living quail embryos. We focus on the developing limb and describe how different tissues can be imaged using micromagnetic resonance imaging and this information then synthesised, using a three-dimensional visualisation package, into detailed anatomy. We illustrate the potential for micro-magnetic resonance imaging to analyse phenotypic changes following chick limb manipulation. The work with the living quail embryos lays the foundations for using micromagnetic resonance imaging as an experimental tool to follow the consequences of such manipulations over time.
In Drosophila, Iroquois (Irx) genes have various functions including the specification of the identity of wing veins. Vertebrate Iroquois (Irx) genes have been reported to be expressed in the developing digits of mouse limbs. Here we carry out a phylogenetic analysis of vertebrate Irx genes and compare expression in developing limbs of mouse, chick and human embryos and in zebrafish pectoral fin buds. We confirm that the six Irx gene families in vertebrates are well defined and that Clusters A and B are duplicates; in contrast, Irx1 and 3, Irx2 and 5, and Irx4 and 6 are paralogs. All Irx genes in mouse and chick are expressed in developing limbs. Detailed comparison of the expression patterns in mouse and chick shows that expression patterns of genes in the same cluster are generally similar but paralogous genes have different expression patterns. Mouse and chick Irx1 are expressed in digit condensations, whereas mouse and chick Irx6 are expressed interdigitally. The timing of Irx1 expression in individual digits in mouse and chick is different. Irx1 is also expressed in digit condensations in developing human limbs, thus showing conservation of expression of this gene in higher vertebrates. In zebrafish, Irx genes of all but six of the families are expressed in early stage pectoral fin buds but not at later stages, suggesting that these genes are not involved in patterning distal structures in zebrafish fins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.