The foreign body reaction is a chronic inflammatory response to an implanted biomaterial that ultimately leads to fibrous encapsulation of the implant. It is widely accepted that the host response to implanted biomaterials is largely dependent on the species and conformations of proteins adsorbed onto the material surface due to the adsorbate's role in mediating cellular interactions with the implanted material. While the cellular response to adsorbed serum-derived proteins has been studied extensively, the presence of endogenous, matrix-and cell-derived mediators of inflammation within the adsorbed protein layer and their impact on cell−material interactions is not well-understood. Damage associated molecular patterns (DAMPs) are endogenous ligands released by stressed or damaged tissues to stimulate sterile inflammatory responses via Toll-like receptors (TLRs) and other pattern recognition receptors. The present study investigated the potential role of tissue-derived, pro-inflammatory stimuli in macrophage responses to biomaterials using cell lysate as a complex source of cell-derived DAMPs and poly(methyl methacrylate) (PMMA) and polydimethylsiloxane (PDMS) films as model biomaterials. We show that lysate-adsorbed PMMA and PDMS surfaces strongly induced NF-κB/AP-1 transcription factor activity and pro-inflammatory cytokine secretion in the RAW-Blue macrophage cell line compared to serum-adsorbed surfaces. Lysate-dependent NF-κB/AP-1 activation and cytokine expression were strongly attenuated by TLR2 neutralizing antibodies, while TLR4 inhibition resulted in a modest reduction. These data suggest that DAMPs, in their adsorbed conformations on material surfaces, may play a significant role in macrophage activation through TLR signaling, and that TLR pathways, particularly TLR2, merit further investigation as potential therapeutic targets to modulate host responses to implanted biomaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.