Sharks play a vital role in the health of marine ecosystems, but the potential threat that sharks pose to humans is a reminder of our vulnerability when entering the ocean. Personal shark deterrents are being marketed as the solution to mitigate the threat that sharks pose. However, the effectiveness claims of many personal deterrents are based on our knowledge of shark sensory biology rather than robust testing of the devices themselves, as most have not been subjected to independent scientific studies. Therefore, there is a clear need for thorough testing of commercially available shark deterrents to provide the public with recommendations of their effectiveness. Using a modified stereo-camera system, we quantified behavioural interactions between white sharks (Carcharodon carcharias) and a baited target in the presence of a commercially available, personal electric shark deterrent (Shark Shield Freedom7™). The stereo-camera system enabled an accurate assessment of the behavioural responses of C. carcharias when encountering a non-lethal electric field many times stronger than what they would naturally experience. Upon their first observed encounter, all C. carcharias were repelled at a mean (± std. error) proximity of 131 (± 10.3) cm, which corresponded to a mean voltage gradient of 9.7 (± 0.9) V/m. With each subsequent encounter, their proximity decreased by an average of 11.6 cm, which corresponded to an increase in tolerance to the electric field by an average of 2.6 (± 0.5) V/m per encounter. Despite the increase in tolerance, sharks continued to be deterred from interacting for the duration of each trial when in the presence of an active Shark Shield™. Furthermore, the findings provide no support to the theory that electric deterrents attract sharks. The results of this study provide quantitative evidence of the effectiveness of a non-lethal electric shark deterrent, its influence on the behaviour of C. carcharias, and an accurate method for testing other shark deterrent technologies.
animal locomotion, Academic Press, New York, pp [333][334][335][336][337][338] 1977), which suggests that the relationship between cruising speed and length appears to be dominated by energetics. The results suggest that existing allometric estimates of cruising speeds can be improved by defining cruising speeds for each species as a function of length. Currently, literature presents cruising speed data for only a few species of shark; therefore, we provide a second, generalised model, which predicts cruising speed as a function of length and tail shape. The length + tail shape model was selected based on its generality and accuracy in estimating shark cruising speeds obtained from acoustic tags. This length + tail shape model was significantly better than a length only model; it explained a further 76 % of the variation in cruising speed derived from stereo-BRUVS and acoustic tagging data than a length only model. The more accurate prediction of the length + tail shape model is most likely because tail shape is correlated with a number of ecological factors.
In most animals, vision plays an important role in detecting prey, predators and conspecifics. The effectiveness of vision in assessing cues such as motion and shape is influenced by the ability of the visual system to detect changes in contrast in both space and time. Understanding the role vision plays in shark behaviour has been limited by a lack of knowledge about their temporal resolution, contrast sensitivity and spatial resolution. In this study, an electrophysiological approach was used to compare these measures across five species of sharks: Chiloscyllium punctatum, Heterodontus portusjacksoni, Hemiscyllium ocellatum, Mustelus mustelus and Haploblepharus edwardsii. All shark species were highly sensitive to brightness contrast and were able to detect contrast differences as low as 1.6%. Temporal resolution of flickering stimuli ranged from 28 to 44 Hz. Species that inhabit brighter environments were found to have higher temporal resolution. Spatial resolving power was estimated in C. punctatum, H. portusjacksoni and H. ocellatum and ranged from 0.10 to 0.35 cycles per degree, which is relatively low compared to other vertebrates. These results suggest that sharks have retinal adaptations that enhance contrast sensitivity at the expense of temporal and spatial resolution, which is beneficial for vision in dimly lit and/or low contrast aquatic environments.
Sharks have long been described as having 'poor' vision. They are cone monochromats and anatomical estimates suggest they have low spatial resolution. However, there are no direct behavioural measurements of spatial resolution or contrast sensitivity. This study estimates contrast sensitivity and spatial resolution of two species of benthic sharks, the Port Jackson shark, Heterodontus portusjacksoni, and the brown-banded bamboo shark, Chiloscyllium punctatum, by recording eye movements in response to optokinetic stimuli. Both species tracked moving low spatial frequency gratings with weak but consistent eye movements. Eye movements ceased at 0.38 cycles per degree, even for high contrasts, suggesting low spatial resolution. However, at lower spatial frequencies, eye movements were elicited by low contrast gratings, 1.3% and 2.9% contrast in H. portusjacksoni and C. punctatum, respectively. Contrast sensitivity was higher than in other vertebrates with a similar spatial resolving power, which may reflect an adaptation to the relatively low contrast encountered in aquatic environments. Optokinetic gain was consistently low and neither species stabilised the gratings on their retina. To check whether restraining the animals affected their optokinetic responses, we also analysed eye movements in freeswimming C. punctatum. We found no eye movements that could compensate for body rotations, suggesting that vision may pass through phases of stabilisation and blur during swimming. As C. punctatum is a sedentary benthic species, gaze stabilisation during swimming may not be essential. Our results suggest that vision in sharks is not 'poor' as previously suggested, but optimised for contrast detection rather than spatial resolution.
The effect of sound on the behaviour of sharks has not been investigated since the 1970s. Sound is, however, an important sensory stimulus underwater, as it can spread in all directions quickly and propagate further than any other sensory cue. We used a baited underwater camera rig to record the behavioural responses of eight species of sharks (seven reef and coastal shark species and the white shark, Carcharodon carcharias ) to the playback of two distinct sound stimuli in the wild: an orca call sequence and an artificially generated sound. When sounds were playing, reef and coastal sharks were less numerous in the area, were responsible for fewer interactions with the baited test rigs, and displayed less ‘inquisitive’ behaviour, compared to during silent control trials. White sharks spent less time around the baited camera rig when the artificial sound was presented, but showed no significant difference in behaviour in response to orca calls. The use of the presented acoustic stimuli alone is not an effective deterrent for C. carcharias . The behavioural response of reef sharks to sound raises concern about the effects of anthropogenic noise on these taxa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.