SUMMARY
Dopaminergic neurons in the ventral tegmental area (VTA) are well known for their role in mediating the positive reinforcing effects of drugs of abuse. Here, we identify in rodents and humans a population of VTA dopamine neurons co-expressing corticotropin releasing factor (CRF). We provide further evidence in rodents that chronic nicotine exposure upregulates CRF mRNA in dopaminergic neurons of the posterior VTA, activates local CRF1 receptors, and blocks nicotine-induced activation of transient GABAergic input to dopaminergic neurons. Local downregulation of CRF mRNA and specific pharmacological blockade of CRF1 receptors in the VTA reversed the effect of nicotine on GABAergic input to dopaminergic neurons, prevented the aversive effects of nicotine withdrawal, and limited the escalation of nicotine intake. These results link the brain reward and stress systems within the same brain region in signaling the negative motivational effects of nicotine withdrawal.
Teneurin C-terminal associated peptide (TCAP) is an ancient paracrine signalling agent that evolved via lateral gene transfer from prokaryotes into an early metazoan ancestor. Although it bears structural similarity to corticotrophin-releasing hormone (CRH), it inhibits the in vivo actions of CRH. The TCAPs are highly expressed in neurones, where they induce rapid cytoskeletal rearrangement and are neuroprotective. Because these processes are highly energy-dependent, this suggests that TCAP has the potential to regulate glucose uptake because glucose is the primary energy substrate in brain, and neurones require a steady supply to meet the high metabolic demands of neuronal communication. Therefore, the objective of the present study was to assess the effect of TCAP-mediated glucose uptake in the brain and in neuronal cell models. TCAP-mediated F-deoxyglucose (FDG) uptake into brain tissue was assessed in male wild-type Wistar rats by functional positron emission tomography. TCAP-1 increased FDG uptake by over 40% into cortical regions of the brain, demonstrating that TCAP-1 can significantly enhance glucose supply. Importantly, a single nanomolar injection of TCAP-1 increased brain glucose after 3 days and decreased blood glucose after 1 week. This is corroborated by a decreased serum concentration of insulin and an increased serum concentration of glucagon. In immortalised hypothalamic neurones, TCAP-1 increased ATP production and enhanced glucose uptake by increasing glucose transporter recruitment to the plasma membrane likely via AKT and mitogen-activated protein kinase/ERK phosphorylation events. Taken together, these data demonstrate that TCAP-1 increases glucose metabolism in neurones, and may represent a peptide signalling agent that regulated glucose uptake before insulin and related peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.