Pseudomonas aeruginosa, an opportunistic human pathogen, causes acute pneumonia in patients with hospital-acquired infections and is commonly associated with chronic lung disease in individuals with cystic fibrosis (CF). Evidence suggests that the pathophysiological effects of P. aeruginosa are mediated in part by virulence factors secreted by the bacterium. Among these factors is pyocyanin, a redox active compound that increases intracellular oxidant stress. We find that pyocyanin increases release of interleukin-8 (IL-8) by both normal and CF airway epithelial cell lines and by primary airway epithelial cells. Moreover, pyocyanin synergizes with the inflammatory cytokines tumor necrosis factor alpha and IL-1α. RNase protection assays indicate that increased IL-8 release is accompanied by increased levels of IL-8 mRNA. The antioxidant n -acetyl cysteine, general inhibitors of protein tyrosine kinases, and specific inhibitors of mitogen-activated protein kinases diminish pyocyanin-dependent increases in IL-8 release. Conversely, inhibitors of protein kinases C (PKC) and PKA have no effect. In contrast to its effects on IL-8 expression, pyocyanin inhibits cytokine-dependent expression of the monocyte/macrophage/T-cell chemokine RANTES. Increased release of IL-8, a potent neutrophil chemoattractant, in response to pyocyanin could contribute to the marked infiltration of neutrophils and subsequent neutrophil-mediated tissue damage that are observed inPseudomonas-associated lung disease.
Delivery of IgA to the mucosal surface occurs via transcytosis of polymeric IgA (pIgA) across the epithelium, a process mediated by the pIgR. Several factors increase pIgR expression in human epithelial cells, including IL-4 and IFN-γ. Using an RNase protection assay, we found that IL-4 and IFN-γ increase steady state levels of pIgR mRNA in both human intestinal (HT29) and airway (Calu-3) epithelial cells. Time course studies in HT29 clone 19A cells showed that with each cytokine alone and with both together: 1) there was a significant lag before mRNA levels increased; 2) maximal levels were not reached until 48–72 h after the addition of cytokines; 3) mRNA levels remained elevated in the continued presence of cytokines; and 4) addition of actinomycin D or removal of cytokines led to decreases in mRNA levels with a half-life of ∼20–28 h. Cytokine-dependent increases in steady state levels of pIgR mRNA were inhibited by cycloheximide and by protein tyrosine kinase inhibitors but not by inhibitors of protein kinase C or cAMP-dependent protein kinase A. Both IFN-γ and IL-4 increased expression of the inducible transcription factor IFN regulatory factor-1 (IRF-1), but levels of IRF-1 only weakly correlated with levels of pIgR mRNA, suggesting that additional transcription factors are required. These studies provide additional insights into the mechanisms by which cytokines regulate expression of the pIgR, a central player in mucosal immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.