The present palette of opsin-based optogenetic tools lacks a light-gated potassium (K(+)) channel desirable for silencing of excitable cells. Here, we describe the construction of a blue-light-induced K(+) channel 1 (BLINK1) engineered by fusing the plant LOV2-J伪 photosensory module to the small viral K(+) channel Kcv. BLINK1 exhibits biophysical features of Kcv, including K(+) selectivity and high single-channel conductance but reversibly photoactivates in blue light. Opening of BLINK1 channels hyperpolarizes the cell to the K(+) equilibrium potential. Ectopic expression of BLINK1 reversibly inhibits the escape response in light-exposed zebrafish larvae. BLINK1 therefore provides a single-component optogenetic tool that can establish prolonged, physiological hyperpolarization of cells at low light intensities.
Highlights d HCN4 structure is shown in ligand-free and ligandbound state d Pore domain is shown in closed and in open configuration d Permeability and selectivity mechanisms of HCN channels are uncovered d A metal ion coordination site functionally couples cytoplasmic and transmembrane domains
Currently available inhibitory optogenetic tools provide short and transient silencing of neurons, but they cannot provide long-lasting inhibition because of the requirement for high light intensities. Here we present an optimized blue-light-sensitive synthetic potassium channel, BLINK2, which showed good expression in neurons in three species. The channel is activated by illumination with low doses of blue light, and in our experiments it remained active over (tens of) minutes in the dark after the illumination was stopped. This activation caused long periods of inhibition of neuronal firing in ex vivo recordings of mouse neurons and impaired motor neuron response in zebrafish in vivo. As a proof-of-concept application, we demonstrated that in a freely moving rat model of neuropathic pain, the activation of a small number of BLINK2 channels caused a long-lasting (>30 min) reduction in pain sensation.
Seizure onset is a critically important brain state transition that has proved very difficult to predict accurately from recordings of brain activity. Here we show that an intermittent, optogenetic, stimulation paradigm reveals a latent change in dendritic excitability that is tightly correlated to the onset of seizure activity. Our data show how the precipitous nature of the transition can be understood in terms of multiple, synergistic positive feedback mechanisms: raised intracellular Cl- and extracellular K+, coupled to a reduced threshold for dendritic plateau potentials, and which in turn leads to a switch to pyramidal burst firing. Notably, the stimulation paradigm also delays the evolving epileptic activity, meaning that not only can one monitor seizure risk safely, it may even have an additional anti-epileptic benefit.One Sentence SummaryRapid transitions into seizures arise from mutually accelerating feedback loops, involving changes in dendritic excitability
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.