Superparamagnetic nanocomposites were obtained by dispersion of oleic acid (OA)-coated magnetite NPs in an epoxy system based on diglycidylether of bisphenol A (DGEBA) modified with OA. Dispersion of conventional oleic acidstabilized magnetite NPs in a typical epoxy matrix is not possible due to the dissimilar chemical structures of the organic coating and the reactive solvent. However, by modification of a DGEBA-based epoxy with 20 wt % OA, we obtained a suitable reactive solvent to disperse up to at least 8 wt % of OA-stabilized magnetite NPs. A tertiary amine was used to catalyze the epoxy−acid reaction and initiate the homopolymerization of the epoxy excess. Both reactions occurred practically in series, first the epoxy−acid and then the epoxy homopolymerization. It was necessary to complete the first reaction to attain a very good dispersion of magnetite NPs in the reactive solvent previous to the occurrence of the final reaction. Magnetization curves and TEM images revealed a uniform dispersion of individual nanoparticles in the cross-linked epoxy. A sample containing 8 wt % OA-coated magnetite NPs exhibited a temperature increase of 25 °C at its surface when exposed to an alternating magnetic field. The temperature increase was enough to induce the shape memory effect of the nanocomposite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.