Optical diffuse reflectance spectroscopy (DRS) has great potential in the study, diagnosis, and discrimination of biological tissues. Discrimination is based on massive measurements that conform training sets. These sets are then used to classify tissues according to the biomedical application. Classification accuracy depends strongly on the training dataset, which typically comes from different samples of the same class, and from different points of the same sample. The variability of these measurements is not usually considered and is assumed to be purely random, although it could greatly influence the results. In this work, spectral variations within and between samples of different animals of ex-vivo porcine adipose tissue are evaluated. Algorithms for normalization, dimensionality reduction by principal component analysis, and variability control are applied. The PC analysis shows the dataset variability, even when a variability removal algorithm is applied. The projected data appear grouped by animal in the PC space. Mahalanobis distance is calculated for every group, and an ANOVA test is performed in order to estimate the variability. The results confirm that the variability is not random and is dependent at least on the anatomical location and the specific animal. The variability magnitude is significant, particularly if the classification accuracy is needed to be high. As a consequence, it should be taken generally into account in classification problems.
The applications of nanoparticles in optical techniques of diagnosis and treatment of biological tissues are increasing. Image contrast can be improved in diagnostic approaches such as fluorescence, spectroscopy or optical coherence tomography. The therapeutic effect can be increased if nanoparticles are previously incorporated in the biological tissue. This is the case in thermotherapy, or in Photodynamic Therapy. All these applications take advantage of specific properties of the nanoparticles involved, either optical up-or down-conversion, thermal confinement or the ability to act as a drug-carrier.Although many biomedical applications that involve nanoparticles are being proposed and tested, there is a need to take into account the influence of those nanoparticles on optical radiation propagation. The previously mentioned optical treatment and diagnosis techniques assume a particular optical propagation pattern, which is altered by the addition of nanoparticles. This change depends on the nanoparticle material, shape, size and concentration, among other parameters. In order to try to quantify these changes, in this work several phantoms that include different nanoparticles are analyzed, in order to estimate the influence of nanoparticles in optical propagation. A theoretical model of optical propagation, which takes into account the absorption and scattering changes in the medium, is also considered. Nanoparticles of different sizes from 40 nm to 1 µm are analyzed. Nanoparticle materials of interest in biomedical applications are employed. The results are relevant in diagnosis interpretation of images and treatment outcome evaluation when nanoparticles are present.
Digital Image Plane Holography (DIPH) is a non-invasive optical technique which is able to recover the whole object wave. An object is illuminated and the diffused backscattered light is carried to a digital sensor by using a lens, where it interferes with a divergent reference wave with its origin in the lens aperture plane. Selecting each aperture image in the Fourier plane, the amplitude and the phase of the object beam are obtained. If two holograms are recorded at different times, after a small displacement, the reconstructed intensity distributions can be taken as a speckle field, while the phase difference distribution can be analyzed by an interferometric approach. In this work scattering media are investigated by using digital holography. The aim of this paper is to determine the viability of the technique to characterized optical properties of the sample. Different scattering media are modeled with different scattering properties. Each model generates a speckle pattern with different statistical properties (size, contrast, intensity). Both the visibility of the interferometric fringes and the properties of speckle pattern are related with optical properties of the media such as absorption and scattering coefficient. The ability to measure these properties makes the technique a promising method for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.