Rett syndrome is a severe X-linked neurological disorder in which most patients have mutations in the methyl-CpG binding protein 2 (MECP2) gene and suffer from bioaminergic deficiencies and life-threatening breathing disturbances. We used in vivo plethysmography, in vitro electrophysiology, neuropharmacology, immunohistochemistry, and biochemistry to characterize the consequences of the MECP2 mutation on breathing in wild-type (wt) and Mecp2-deficient (Mecp2-/y) mice. At birth, Mecp2-/y mice showed normal breathing and a normal number of medullary neurons that express tyrosine hydroxylase (TH neurons). At ϳ1 month of age, most Mecp2-/y mice showed respiratory cycles of variable duration; meanwhile, their medulla contained a significantly reduced number of TH neurons and norepinephrine (NE) content, even in Mecp2-/y mice that showed a normal breathing pattern. Between 1 and 2 months of age, all unanesthetized Mecp2-/y mice showed breathing disturbances that worsened until fatal respiratory arrest at ϳ2 months of age. During their last week of life, Mecp2-/y mice had a slow and erratic breathing pattern with a highly variable cycle period and frequent apneas. In addition, their medulla had a drastically reduced number of TH neurons, NE content, and serotonin (5-HT) content. In vitro experiments using transverse brainstem slices of mice between 2 and 3 weeks of age revealed that the rhythm produced by the isolated respiratory network was irregular in Mecp2-/y mice but could be stabilized with exogenous NE. We hypothesize that breathing disturbances in Mecp2-/y mice, and probably Rett patients, originate in part from a deficiency in noradrenergic and serotonergic modulation of the medullary respiratory network.
X-chromosome inactivation is the process by which female mammals (with two X chromosomes) achieve expression of X-chromosomal genes equivalent to that of males (one X and one Y chromosome). This results in the transcriptional silencing of virtually all genes on one of the X chromosomes in female somatic cells. X-chromosome inactivation has been shown to act in cis and to initiate and spread from a single site on the X chromosome known as the X-inactivation centre (Xic). The Xic has been localized to a 450-kilobase region of the mouse X chromosome. The Xist gene also maps to this region and is expressed exclusively from the inactive X chromosome. Xist is unusual in that it appears not to code for a protein but produces a nuclear RNA which colocalizes with the inactive X chromosome. The creation of a null allele of Xist in embryonic stem cells has demonstrated that this gene is required for X inactivation to occur in cis. Here we show that Xist, introduced onto an autosome, is sufficient by itself for inactivation in cis and that Xist RNA becomes localized close to the autosome into which the gene is integrated. In addition, the presence of autosomal Xist copies leads to activation of the endogeneous Xist gene in some cells, suggesting that elements required for some aspects of chromosome counting are contained within the construct. Thus the Xist gene exhibits properties of the X-inactivation centre.
Prenatal exposure to alcohol is thought to be the most prevalent nongenetic cause of a wide range of neurodevelopmental deficits. Insufficient thyroid hormone levels are one mechanism that hampers development of the alcohol-exposed brain, and we hypothesized that altered dosage of the imprinted thyroid hormone-inactivating gene deiodinase-III (Dio3) is responsible. To follow parent-of-origin allelic expression of Dio3 in the fetal and adult offspring of alcohol-consuming and control dams, we reciprocally crossed 2 polymorphic rat strains. In the frontal cortex, prenatal alcohol exposure altered imprinting patterns and total expression of Dio3 in the fetus and produced a permanent hypothyroid milieu in the adult. In the hippocampus, alcohol affected the paternal and total expression of Dio3 in the fetus and in the adult male, where thyroid hormone levels were concomitantly increased. Hippocampus-dependent behavioral deficits were identified exclusively in males, suggesting they are dependent on aberrant allelic Dio3 expression. None of these effects were observed in offspring of the reciprocal cross. Thus, genetic background and sex modify vulnerability to prenatal alcohol via brain region-specific expression of Dio3. This finding implies that phenotypic heterogeneity in human fetal alcohol spectrum disorder can be linked to genetic vulnerability in affected brain regions.
Maternal duplications of the imprinted 15q11-13 domain result in an estimated 1%-2% of autism-spectrum disorders, and linkage to autism has been identified within 15q12-13. UBE3A, the Angelman syndrome gene, has, to date, been the only maternally expressed, imprinted gene identified within this region, but mutations have not been found in autistic patients. Here we describe the characterization of ATP10C, a new human imprinted gene, which encodes a putative protein homologous to the mouse aminophospholipid-transporting ATPase Atp10c. ATP10C maps within 200 kb distal to UBE3A and, like UBE3A, also demonstrates imprinted, preferential maternal expression in human brain. The location and imprinted expression of ATP10C thus make it a candidate for chromosome 15-associated autism and suggest that it may contribute to the Angelman syndrome phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.