The effect of deimination of arginyl residues in bovine myelin basic protein (MBP) on its susceptibility to digestion by cathepsin D has been studied. Using bovine component 1 (C-1) of MBP, the most unmodified of the components with all 18 arginyl residues intact, we have generated a number of citrullinated forms by treatment of the protein with purified peptidylarginine deiminase (PAD) in vitro. We obtained species containing 0-9.9 mol of citrulline/mol of MBP. These various species were digested with cathepsin D, a metalloproteinase which cleaves proteins at Phe-Phe linkages. The rate of digestion compared to component 1 was only slightly affected when 2.7 or 3.8 mol of citrulline/mol of MBP was present. With 7.0 mol of citrulline/mol of MBP, a large increase in the rate of digestion occurred. No further increase was observed with 9.9 mol of citrulline/mol of MBP. The immunodominant peptide 43-88 (bovine sequence) was released slowly when 2.7 and 3.8 mol of citrulline/mol of MBP was present, but it was released rapidly when 7.0 mol of citrulline/mol of MBP was present. The dramatic change in digestion with 7.0 mol of citrulline/mol of MBP or more could be explained by a change in three-dimensional structure. Molecular dynamics simulation showed that increasing the number of citrullinyl residues above 7 mol/mol of MBP generated a more open structure, consistent with experimental observations in the literature. We conclude that PAD, which deiminates arginyl residues in proteins, decreases both the charge and compact structure of MBP. This structural change allows better access of the Phe-Phe linkages to cathepsin D. This scheme represents an effective way of generating the immunodominant peptide which sensitizes T-cells for the autoimmune response in demyelinating disease.
Endothelial cell survival and antiapoptotic pathways, including those stimulated by extracellular matrix, are critical regulators of vasculogenesis, angiogenesis, endothelial repair, and shear-stress-induced endothelial activation. One of these pathways is mediated by ␣ v  3 integrin ligation, downstream activation of nuclear factor-B, and subsequent up-regulation of osteoprotegerin (OPG). In this study, the mechanism by which OPG protects endothelial cells from death was examined. Serum-starved human microvascular endothelial cells (HMECs) plated on the ␣ v  3 ligand osteopontin were protected from cell death. Immunoprecipitation experiments indicated that OPG formed a complex with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in HMECs under these conditions. Furthermore, inhibitors of TRAIL, including recombinant soluble TRAIL receptors and a neutralizing antibody against TRAIL, blocked apoptosis of serum-starved HMECs plated on the nonintegrin attachment factor poly-D-lysine. Whereas TRAIL was unable to induce apoptosis in HMECs plated on osteopontin, the addition of recombinant TRAIL did increase the percentage of apoptotic HMECs plated on poly-D-lysine. This evidence indicates that OPG blocks endothelial cell apoptosis through binding TRAIL and preventing its interaction with death-inducing TRAIL-receptors
In earlier studies we demonstrated that an increase in the relative amounts of citrullinated myelin basic protein (MBP) was found in multiple sclerosis (Moscarello et al. 1994). To determine the temporal relationship between the citrullinated MBP and peptidylarginine deiminase (PAD), the enzyme responsible for deiminating arginyl residues in proteins, we studied enzyme activity, enzyme protein, PAD mRNA in a spontaneously demyelinating transgenic mouse model and we correlated the amount of PAD with citrullinated MBP. Both PAD protein as measured in an immunoslot blot method and PAD RNA were elevated. In fractionation studies we showed that the increase in PAD enzyme was due to an increase in the PAD found in membrane fractions and not the soluble PAD (PADII). From our data we concluded that up-regulation of myelin-associated PAD was responsible for the increase in citrullinated MBP in our transgenic mice prior to onset of clinical or pathological signs of demyelination. We postulate that a similar mechanism may be responsible for the increase in citrullinated MBP in multiple sclerosis. Keywords: citrulline, demyelination, MBP, multiple sclerosis, peptidylarginine deiminase. Citrulline in proteins arises as a post-translational modification of arginine. In our original studies we isolated myelin basic protein (MBP) which contained six citrullinyl residues, two near the N terminal portion and four near the C-terminal portion of the molecule (Wood and Moscarello 1989) from normal human brain. This citrullinated MBP accounted for about 20% of the total MBP in normal, adult human brain. The other 80% consisted of other post-translationally modified MBPs, several of which had already been described (Martenson et al. 1969;Deibler and Martenson 1973). Phosphorylation, deamidation and C-terminal arginine loss were some of the modifications described at that time to account for the various components. Several of these posttranslationally modified forms (components or charge isomers) could be resolved by chromatography on cation exchange columns at alkaline pH. The citrullinated MBP was less cationic than any of the others and did not bind to the resin, and consequently was not recognized in the earlier studies. After isolation and characterization we referred to this material as C-8 (component 8) to distinguish it from C-1, -2, -3, -4, etc., all of which had been isolated.Two observations suggested that the citrullinated MBP may have an important role in human myelin development and in human demyelinating disease. In a developmental study we found that in human infants up to 2 years of age, all of the MBP was of the citrullinated variety and, in chronic multiple sclerosis (MS), the proportion of the citrullinated protein increased from 20% in the normal to 45% in chronic MS (Moscarello et al. 1994). In a case of fulminating MS (Marburg's variant) almost 100% of the MBP was citrullinated (Wood et al. 1996), and the number of citrullinyl groups was increased from six to 18, leaving a single arginine in MBP from Marb...
Deimination of myelin basic protein (MBP) has been implicated in the chemical pathogenesis of multiple sclerosis (MS). Degradation of bovine MBP by cathepsin D, a myelin-associated protease, was increased when 6 arginyl residues were deiminated and became very rapid when all 18 arginyl residues were deiminated. Since MBP contains a number of modifications, including methylation, phosphorylation, etc., we studied the effect of methylation, an irreversible modification, to determine how this modification affected deimination. Methylation of Arg 106 in bovine MBP (Arg 107 in human), a naturally occurring modification of MBP, has been shown to affect the deimination of arginyl residues in the present study. Since fractionation of MBP into unmethylated, monomethylated, and dimethylated species cannot be done readily on a preparative scale, mass spectrometry with the Q-TOF instrument resolved these species readily since each differed from the other by 14 atomic mass units (amu). Examination of five different hMBP samples, two from normal brain and three from MS brain, revealed that increased deimination of arginyl residues correlated with a decreased methylation of Arg 107 (human sequence). To study this process in vitro, bovine MBP (bMBP) was used. Component 1 (C-1) is the most cationic of the MBP "charge isomers" and the most unmodified, in which all arginyl residues are intact. It was deiminated to various extents with purified bovine brain peptidylarginine deiminase, generating a number of species containing 0-13.7 mol of citrulline/mol of bMBP. Mass spectrometry of each of these species permitted us to determine the influence of methylation of Arg 106 (bovine sequence) on deimination by this enzyme. We found that bMBP with unmethylated arginine was deiminated at a rate of 0.081 mol of citrulline/min, with monomethylarginine, 0.068 mol of citrulline/min, and with dimethylarginine, 0.036 mol of citrulline/min. We suggest that the methylated arginyl residue becomes sequestered in the hydrophobic beta-sheet structure and disrupts the three-dimensional structure of the protein so that other arginyl residues are less accessible to peptidylarginine deiminase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.