Consumption of raw/undercooked ground beef is the most common route of transmission of Shiga toxin-producing E. coli (STEC). The aim of the study was to determine the STEC contamination level of the ground beef samples collected in 36 markets of different socioeconomic strata in Buenos Aires, Argentina, and the characterization of the isolated strains. Ninety-one out of 252 (36.1%) samples were stx+. Fifty-seven STEC strains were recovered. Eleven STEC strains belonged to O157 serogroup, and 46 to non-O157 serogroups. Virulence markers of the 57 STEC were stx1, 5.3% (3/57); stx2, 86.0% (49/57); stx1/stx2, 8.8% (5/57); ehxA, 61.4% (35/57); eae, 26.3% (15/57); saa, 24.6% (14/57). Shiga toxin subtypes were stx2, 31.5% (17/54); stx2c-vhb, 24.1% (13/54); stx2c-vha, 20.4% (11/54); stx2/stx2c-vha, 14.8% (8/54); stx2/stx2c-vhb, 5.6% (3/54); stx2c-vha/vhb, 3.7% (2/54). Serotypes O178:H19 and O157:H7 were prevalent. Contamination rate of STEC in all strata was high, and the highest O157 contamination was observed at low strata at several sampling rounds. Persistence of STEC was not detected. Sixteen strains (28.1%) were resistant to ampicillin, streptomycin, amikacin, or tetracycline. The STEC contamination level of ground beef could vary according to the sociocultural characteristics of the population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.