1q44 deletion is a rare syndrome associated with facial dysmorphism and developmental delay, in particular related with expressive speech, seizures, and hypotonia (ORPHA:238769). Until today, the distinct genetic causes for the different symptoms remain not entirely clear. We present a patient with a 2.3-Mb 1q44 deletion, including AKT3, ZBTB18, and HNRNPU, who shows microcephaly, developmental delay, abnormal corpus callosum, and seizures. The genetic findings in this case and a review of the literature spotlight a region between 243 Mb and 245 Mb on chromosome 1q related to the genesis of the typical symptoms of 1q44 deletion.
We present a clinical and molecular cytogenetic characterization of two new patients with a complex supernumerary marker consisting of the entire short arm of chromosome 18 with a chromosome 13/21 centromere. One patient is a girl with a nonsyndromic intellectual disability and the second is a prenatally diagnosed fetus. To our knowledge, these are the fourth and fifth such cases to be described in the literature, suggesting the existence of a possible recurring constitutional structural chromosome abnormality.
Small supernumerary marker chromosomes (sSMC) originating from chromosome 10 are rare and usually found in mosaic form. We present a de novo apparently non-mosaic sSMC(10) prenatally diagnosed in amniotic fluid and postnatally confirmed in peripheral blood. Characterization by array-CGH showed a pericentromeric duplication of 7.1 Mb of chromosome 10. The fetus did not show ultrasound abnormalities, and a normal female phenotype was observed during a 3-year postnatal follow-up. The absence of phenotypic abnormalities in the present case provides evidence of a non-critical pericentromeric region in 10p11.21q11.1 (hg19 35,355,570-42,448,569) associated with a duplication.
The use of new technologies in the routine diagnosis of constitutional abnormalities, such as high-resolution chromosomal microarray and next-generation sequencing, has unmasked new mechanisms for generating structural variation of the human genome. For example, complex chromosome rearrangements can originate by a chromosome catastrophe phenomenon in which numerous genomic rearrangements are apparently acquired in a single catastrophic event. This phenomenon is named chromoanagenesis (from the Greek “chromo” for chromosome and “anagenesis” for rebirth). Herein, we report 2 cases of genomic chaos detected at prenatal diagnosis. The terms “chromothripsis” and “chromoanasynthesis” and the challenge of genetic counseling are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.