In the basal chordate amphioxus (Branchiostoma), somites extend the full length of the body. The anteriormost somites segment during the gastrula and neurula stages from dorsolateral grooves of the archenteron. The remaining ones pinch off, one at a time, from the tail bud. These posterior somites appear to be homologous to those of vertebrates, even though the latter pinch off from the anterior end of bands of presomitic mesoderm rather than directly from the tail bud. To gain insights into the evolution of mesodermal segmentation in chordates, we determined the expression of ten genes in nascent amphioxus somites. Five (Uncx4.1, NeuroD/atonal-related, IrxA, Pcdhdelta2-17/18, and Hey1) are expressed in stripes in the dorsolateral mesoderm at the gastrula stage and in the tail bud while three (Paraxis, Lcx, and Axin) are expressed in the posterior mesendoderm at the gastrula and neurula stages and in the tail bud at later stages. Expression of two genes (Pbx and OligA) suggests roles in the anterior somites that may be unrelated to initial segmentation. Together with previous data, our results indicate that, with the exception that Engrailed is only segmentally expressed in the anterior somites, the genetic mechanisms controlling formation of both the anterior and posterior somites are probably largely identical. Thus, the fundamental pathways for mesodermal segmentation involving Notch-Delta, Wnt/beta-catenin, and Fgf signaling were already in place in the common ancestor of amphioxus and vertebrates although budding of somites from bands of presomitic mesoderm exhibiting waves of expression of Notch, Wnt, and Fgf target genes was likely a vertebrate novelty. Given the conservation of segmentation gene expression between amphioxus and vertebrate somites, we propose that the clock mechanism may have been established in the basal chordate, while the wavefront evolved later in the vertebrate lineage.
Gene expression in the Caenorhabditis elegans pharynx is regulated in part by organ-specific signals, which in the myo-2 gene target a regulatory sequence called the C sub-element. C sub-element activity requires the organ specification factor PHA-4, a winged-helix transcription factor expressed in all pharyngeal cells. To identify additional factors involved in pharyngeal organogenesis, we performed a yeast one-hybrid screen for C sub-element binding proteins. Here we describe the novel factor PEB-1, which is coexpressed with PHA-4 in many pharyngeal cell types, including muscles, epithelial cells, marginal cells, and glands, but is undetectable in the pharyngeal nervous system. PEB-1 is also detected outside the pharynx in cells surrounding the rectum and vulva, as well as in the germ line. Reduction of peb-1 function using RNAi results in morphological defects in the somatic tissues in which peb-1 is expressed. We have mapped the PEB-1 DNA-binding domain to a 158-residue region, which is unrelated to known DNA-binding proteins but shares some sequence similarity to the Drosophila Mod(mdg4) proteins. PEB-1 specifically recognizes a site in the C subelement that partially overlaps the PHA-4 binding site. Both the PEB-1 and the PHA-4 binding sites are necessary for strong C sub-element enhancer activity in some cells in which these factors are coexpressed. In contrast the PEB-1 site is dispensable for C sub-element activity in pharyngeal neurons. We propose that PEB-1 functions with PHA-4 to activate target gene expression in cells in which they are coexpressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.