Existing implantable stimulators use powering approaches that result in stiff and bulky systems or result in systems incapable of producing the current magnitudes required for neuromuscular stimulation. This hampers their use in neuroprostheses for paralysis. We previously demonstrated an electrical stimulation method based on electronic rectification of high frequency (HF) current bursts. The implants act as rectifiers of HF current that flows through the tissues by galvanic coupling, transforming this current into low frequency current capable of performing neuromuscular stimulation. Here we developed 2 mm thick, semi-rigid, injectable and addressable stimulators made of off-the-shelf components and based on this method. The devices were tested in vitro to illustrate how they are powered by galvanic coupling. In addition they were tried in an animal model to demonstrate their ability to perform controlled electrical stimulation. The implants were deployed by injection into two antagonist muscles of an anesthetized rabbit and were addressed resulting in independent isometric contractions. Low frequency currents of 2 mA were delivered by the implants. The HF currents are safe in terms of unwanted electrostimulation and tissue heating according to standards. This indicates that the proposed electrical stimulation method will allow unprecedented levels of miniaturization for neuroprostheses.
Galvanic coupling, or more precisely volume conduction, has been recently studied by different research groups as a method for intrabody communications. However, only in a very few occasions its use for powering implants has been proposed and proper analyses of such capability are still lacking. We present the development and the in vitro validation of a set of analytical expressions able to estimate the maximum ac and dc powers attainable in elongated implants powered by volume conduction. In particular, the expressions do not describe the complete power transfer channel but the behavior of the implants when the presence of an electric field is assumed. The expressions and the in vitro models indicate that time-averaged powers above 1 mW can be readily obtained in very thin (diameter < 1 mm) and short (length < 15 mm) implants when ac fields that comply with safety standards are present in the tissues where the implants are located. The expressions and the in vitro models also indicate that the obtained dc power is maximized by delivering the ac field in the form of short bursts rather than continuously. The study results support the use of volume conduction as a safe option to power implants. INDEX TERMS Conducting materials, implantable biomedical devices, implantable electrodes, wireless power transmission. After working as a Research Engineer with the Translational Research and Knowledge Management Team (Research and Development), Otto Bock GmbH, Duderstadt, Germany, she became a Postdoctoral Fellow at UPF. Her research focuses mainly in exploring and designing miniaturized medical devices for sensing and electrical stimulation.
Background Implantable neuroprostheses consisting of a central electronic unit wired to electrodes benefit thousands of patients worldwide. However, they present limitations that restrict their use. Those limitations, which are more adverse in motor neuroprostheses, mostly arise from their bulkiness and the need to perform complex surgical implantation procedures. Alternatively, it has been proposed the development of distributed networks of intramuscular wireless microsensors and microstimulators that communicate with external systems for analyzing neuromuscular activity and performing stimulation or controlling external devices. This paradigm requires the development of miniaturized implants that can be wirelessly powered and operated by an external system. To accomplish this, we propose a wireless power transfer (WPT) and communications approach based on volume conduction of innocuous high frequency (HF) current bursts. The currents are applied through external textile electrodes and are collected by the wireless devices through two electrodes for powering and bidirectional digital communications. As these devices do not require bulky components for obtaining power, they may have a flexible threadlike conformation, facilitating deep implantation by injection. Methods We report the design and evaluation of advanced prototypes based on the above approach. The system consists of an external unit, floating semi-implantable devices for sensing and stimulation, and a bidirectional communications protocol. The devices are intended for their future use in acute human trials to demonstrate the distributed paradigm. The technology is assayed in vitro using an agar phantom, and in vivo in hindlimbs of anesthetized rabbits. Results The semi-implantable devices were able to power and bidirectionally communicate with the external unit. Using 13 commands modulated in innocuous 3 MHz HF current bursts, the external unit configured the sensing and stimulation parameters, and controlled their execution. Raw EMG was successfully acquired by the wireless devices at 1 ksps. Conclusions The demonstrated approach overcomes key limitations of existing neuroprostheses, paving the way to the development of distributed flexible threadlike sensors and stimulators. To the best of our knowledge, these devices are the first based on WPT by volume conduction that can work as EMG sensors and as electrical stimulators in a network of wireless devices.
Existing power supply methods, and, in particular inductive links, comprise stiff and bulky parts. This hinders the development of minimally invasive implantable devices for neuroprostheses based on electrical stimulation. The proposed methodology is intended to relieving such bottleneck. In terms of mass, thinness, and flexibility, the demonstrated implants appear to be unprecedented among the intramuscular stimulation implants ever assayed in vertebrates.
Galvanic coupling, or more precisely, volume conduction, can be used to communicate with and to transfer power to electronic implants. Since no bulky components for power, such as coils or batteries, are required within the implants, this strategy can yield very thin devices suitable for implantation by injection. To design the circuitry of both the implants and the external systems, it is desirable to possess a model that encompasses the behavior of these circuits and also the volume conduction phenomenon. Here we propose to model volume conduction with a two-port network so that the whole system can be studied in circuit simulators. The two-port network consists only of three impedances whose values can be obtained through simple measurements or through numerical methods. We report a validation of this modeling approach in a geometrically simple in vitro setup that allowed us to determine the impedances of the two-port network not only by performing measurements or through a finite element method study but also through an analytical solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.