A sensitive and specific polymerase chain reaction method for the detection of human herpesvirus 6 (HHV-6) DNA in serum or plasma has been developed. In total, 157 human serum or plasma samples were studied. HHV-6 DNA was detected in 6 (85.7%) of 7 children with exanthem subitum, 3 (23.1%) of 13 bone marrow transplant (BMT) recipients, 4 (22.2%) of 18 human immunodeficiency virus (HIV)-infected patients, 1 (2.6%) of 39 patients with chronic fatigue syndrome, and none of 37 healthy adults. In the HHV-6-positive BMT recipients, HHV-6 plasma DNA was transiently detected during episodes of fever and respiratory infection. In children with exanthem subitum and in 1 HIV-infected patient, the HHV-6 strains were characterized as variant B, whereas variant A was detected in all other patients. Detection of viral DNA in serum or plasma is a marker of active infection that can be used to investigate the role of HHV-6 in human disease.
There is increasing interest in designing new biomaterials that could potentially be used in the form of scaffolds as bone substitutes. In this study we used a hydrophobic crosslinked polyurethane in a typical tissue-engineering approach, that is, the seeding and in vitro culturing of cells using a porous scaffold. Using an electromagnetic bioreactor (magnetic field intensity, 2 mT; frequency, 75 Hz), we investigated the effect of the electromagnetic stimulation on SAOS-2 human osteoblast proliferation and calcified matrix production. Cell proliferation was twice as high; expression of decorin, osteocalcin, osteopontin, type I collagen, and type III collagen was greater (1.3, 12.2, 12.1, 10.0, and 10.5 times as great, respectively); and calcium deposition was 5 times as great as under static conditions without electromagnetic stimulation. RT-PCR analysis revealed the electromagnetically upregulated transcription specific for decorin, fibronectin, osteocalcin, osteopontin, transforming growth factor-beta, type I collagen, and type III collagen. The immunolocalization of the extracellular matrix constituents showed their colocalization in the cell-rich areas. The bioreactor and the polyurethane foam were designed to obtain cell colonization and calcified matrix deposition. This cultured biomaterial could be used, in clinical applications, as an osteoinductive implant for bone repair.
In bone tissue engineering, bioglass coating of titanium (Ti) scaffolds has drawn attention as a method to improve osteointegration and implant fixation. In this in vitro study, bioactive glass layers with an approximate thickness of 1 microm were deposited at 200 degrees C onto a three-dimensional Ti-6Al-4V scaffold using a radio frequency (r.f.) magnetron sputtering system. After incubation with SAOS-2 human osteoblasts, in comparison with the uncoated scaffolds, the bioglass-coated scaffolds showed a twofold increase in cell proliferation (p < 0.05) up to 68.4 x 10(6), and enhanced the deposition of extracellular matrix components such as decorin, fibronectin, osteocalcin, osteonectin, osteopontin, and type-I and -III collagens (p < 0.05). Calcium deposition was twofold greater on the bioglass-coated scaffolds (p < 0.05). The immunofluorescence related to the preceding bone matrix proteins and calcium showed their colocalization to the cell-rich areas. Alkaline phosphatase activity increased twofold (p < 0.001) and its protein content was threefold higher with respect to the uncoated sample. Quantitative reverse transcriptase-polymerase chain reaction analysis revealed upregulated transcription specific for type-I collagen and osteopontin (p < 0.001). All together, these results demonstrate that the bioglass coating of the three-dimensional Ti scaffolds by the r.f. magnetron sputtering technique determines an in vitro increase of the bone matrix elaboration and may potentially have a clinical benefit.
Bone regeneration is currently one of the most important and challenging tissue engineering approaches in regenerative medicine. Bone regeneration is a promising approach in dentistry and is considered an ideal clinical strategy in treating diseases, injuries, and defects of the maxillofacial region. Advances in tissue engineering have resulted in the development of innovative scaffold designs, complemented by the progress made in cell-based therapies. In vitro bone regeneration can be achieved by the combination of stem cells, scaffolds, and bioactive factors. The biomimetic approach to create an ideal bone substitute provides strategies for developing combined scaffolds composed of adult stem cells with mesenchymal phenotype and different organic biomaterials (such as collagen and hyaluronic acid derivatives) or inorganic biomaterials such as manufactured polymers (polyglycolic acid (PGA), polylactic acid (PLA), and polycaprolactone). This review focuses on different biomaterials currently used in dentistry as scaffolds for bone regeneration in treating bone defects or in surgical techniques, such as sinus lift, horizontal and vertical bone grafts, or socket preservation. Our review would be of particular interest to medical and surgical researchers at the interface of cell biology, materials science, and tissue engineering, as well as industry-related manufacturers and researchers in healthcare, prosthetics, and 3D printing, too.
Tm7sf2 gene encodes 3beta-hydroxysterol Delta(14)-reductase (C14SR, DHCR14), an endoplasmic reticulum enzyme acting on Delta(14)-unsaturated sterol intermediates during the conversion of lanosterol to cholesterol. The C-terminal domain of lamin B receptor, a protein of the inner nuclear membrane mainly involved in heterochromatin organization, also possesses sterol Delta(14)-reductase activity. The subcellular localization suggests a primary role of C14SR in cholesterol biosynthesis. To investigate the role of C14SR and lamin B receptor as 3beta-hydroxysterol Delta(14)-reductases, Tm7sf2 knockout mice were generated and their biochemical characterization was performed. No Tm7sf2 mRNA was detected in the liver of knockout mice. Neither C14SR protein nor 3beta-hydroxysterol Delta(14)-reductase activity were detectable in liver microsomes of Tm7sf2((-/-)) mice, confirming the effectiveness of gene inactivation. C14SR protein and its enzymatic activity were about half of control levels in the liver of heterozygous mice. Normal cholesterol levels in liver membranes and in plasma indicated that, despite the lack of C14SR, Tm7sf2((-/-)) mice are able to perform cholesterol biosynthesis. Lamin B receptor 3beta-hydroxysterol Delta(14)-reductase activity determined in liver nuclei showed comparable values in wild-type and knockout mice. These results suggest that lamin B receptor, although residing in nuclear membranes, may contribute to cholesterol biosynthesis in Tm7sf2((-/-)) mice. Affymetrix microarray analysis of gene expression revealed that several genes involved in cell-cycle progression are downregulated in the liver of Tm7sf2((-/-)) mice, whereas genes involved in xenobiotic metabolism are upregulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.