Astrocytic Ca 2+ signaling has been intensively studied in health and disease but has not been quantified during natural sleep. Here, we employ an activity-based algorithm to assess astrocytic Ca 2+ signals in the neocortex of awake and naturally sleeping mice while monitoring neuronal Ca 2+ activity, brain rhythms and behavior. We show that astrocytic Ca 2+ signals exhibit distinct features across the sleep-wake cycle and are reduced during sleep compared to wakefulness. Moreover, an increase in astrocytic Ca 2+ signaling precedes transitions from slow wave sleep to wakefulness, with a peak upon awakening exceeding the levels during whisking and locomotion. Finally, genetic ablation of an important astrocytic Ca 2+ signaling pathway impairs slow wave sleep and results in an increased number of microarousals, abnormal brain rhythms, and an increased frequency of slow wave sleep state transitions and sleep spindles. Our findings demonstrate an essential role for astrocytic Ca 2+ signaling in regulating slow wave sleep.
Fluorescence microscopy has tackled many of the burning questions in cellular biology. Probing low-affinity cellular interactions remains one of the major challenges in the field to better understand cellular signaling. We introduce a novel approachthe nanowire-aperture probe (NAP)to resolve biological signatures with a nanoscale resolution and a boost in light detection. The NAP takes advantage of the photonic properties of semiconductor nanowires and provides a highly localized excitation volume close to the nanowire surface. The probing region extends less than 20 nm into the solution, which can be exploited as a local light probe in fluorescence microscopy. This confined detection volume is especially advantageous in the study of cellular signaling at the cell membrane, as it wraps tightly around the nanowire. The nanowire acts as a local nanoaperture, both focusing the incoming excitation light and guiding photons emitted by the fluorophore. We demonstrate a 20-fold boost in signal-to-background sensitivity for single fluorophores and membrane-localized proteins in live cells. This work opens a completely new avenue for next-generation studies of live cells.
Imaging the intact brain of awake behaving mice without the dampening effects of anesthesia, has revealed an exceedingly rich repertoire of astrocytic Ca2+ signals. Analyzing and interpreting such complex signals pose many challenges. Traditional analyses of fluorescent changes typically rely on manually outlined static region-of-interests, but such analyses fail to capture the intricate spatiotemporal patterns of astrocytic Ca2+ dynamics. Moreover, all astrocytic Ca2+ imaging data obtained from awake behaving mice need to be interpreted in light of the complex behavioral patterns of the animal. Hence processing multimodal data, including animal behavior metrics, stimulation timings, and electrophysiological signals is needed to interpret astrocytic Ca2+ signals. Managing and incorporating these data types into a coherent analysis pipeline is challenging and time-consuming, especially if research protocols change or new data types are added. Here, we introduce Begonia, a MATLAB-based data management and analysis toolbox tailored for the analyses of astrocytic Ca2+ signals in conjunction with behavioral data. The analysis suite includes an automatic, event-based algorithm with few input parameters that can capture a high level of spatiotemporal complexity of astrocytic Ca2+ signals. The toolbox enables the experimentalist to quantify astrocytic Ca2+ signals in a precise and unbiased way and combine them with other types of time series data.
Perivascular spaces (PVS) are important highways for fluid and solute transport in the brain enabling efficient waste clearance during sleep. Using two-photon imaging of naturally sleeping mice we demonstrate sleep cycle-dependent PVS dynamics - slow, large-amplitude oscillations in NREM, a reduction in REM and an enlargement upon awakening at the end of a sleep cycle. By biomechanical modeling we demonstrate that these sleep cycle-dependent PVS dynamics drive fluid flow and solute transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.