Despite the tremendous technical advancements in 3D bioprinting, the concept of fabricating 3D structures and functional tissues directly in live animals remains a visionary challenge. We show that 3D cell-laden hydrogels can be efficiently bioprinted across tissues and within tissues of living animals.We developed photo-sensitive polymers that allow in vitro and in vivo fabrication of hydrogels into pre-existing structures, by bio-orthogonal two-photon cycloaddition and crosslinking at wavelengths longer than 850 nm, without byproducts. By this technique, that we name intravital 3D bioprinting, after injection of these polymers in vivo it is possible to fabricate complex 3D structures inside tissues of living mice, including the dermis across epidermis, the skeletal muscle across epimysium or the brain across meninges. The use of commonly available multi-photon microscopes allows accurate (XYZ) positioning and orientation of bioprinted structures into specific anatomical sites. Finally, we show that intravital 3D bioprinting of donor muscle-derived stem cells allows de novo formation of myofibers in host animals. We envision that this strategy will offer an alternative in vivo approach to conventional bioprinting technology, holding great promises to substantially change the paradigm of 3D bioprinting for pre-clinical and clinical use.
Shaping ceramic materials at the nanoscale in 3D is a phenomenal engineering challenge, that can offer new opportunities in a number of industrial applications, including metamaterials, nano‐electromechanical systems, photonic crystals, and damage‐tolerant lightweight materials. 3D fabrication of sub‐micrometer ceramic structures can be performed by two‐photon laser writing of a preceramic polymer. However, polymer conversion to a fully ceramic material has proven so far unfeasible, due to lack of suitable precursors, printing complexity, and high shrinkage during ceramic conversion. Here, it is shown that this goal can be achieved through an appropriate engineering of both the material and the printing process, enabling the fabrication of preceramic 3D shapes and their transformation into dense and crack‐free SiOC ceramic components with highly complex, 3D sub‐micrometer architectures. This method allows for the manufacturing of components with any 3D specific geometry with fine details down to 450 nm, rapidly printing structures up to 100 µm in height that can be converted into ceramic objects possessing sub‐micrometer features, offering unprecedented opportunities in different application fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.