A series of ternary mixed metal oxides containing Group III A elements (In, Ga, Al) is prepared by means of an alcoholic co‐precipitation method. Specifically, oxide catalysts with a molar composition of In/Ga/Al=5:15:80, 10:10:80, and 15:5:80 are reported. The chemical composition, redox properties, and catalyst structures are fully characterized, with the results suggesting that the indium, gallium, and aluminum moieties are well‐dispersed in the catalysts. The catalysts are evaluated for propane dehydrogenation (PDH) at 570 and 600 °C under 1 atm total pressure. The most effective catalyst with a composition of In/Ga/Al=5:15:80 provides 17 % conversion and approximately 86 % C3H6 selectivity with an initial activity of 4.6 mmol h−1 gcat−1 and 24.1 μmol h−1 m−2. The intrinsic activity on an active metal (i.e. indium and gallium) basis is approximately 3 times that of the In2O3–Ga2O3 family and approximately 3–9 times that of the In2O3–Al2O3 family. The catalyst deactivates with time on stream, and regeneration tests show that removal of surface coke and recovery of an In2O3 state helps to regain the initial activity, whereas reducing In2O3 domains into In0 does not allow for recovery of the performance. Raman analysis of the carbonaceous species deposited on the catalyst indicates catalysts with higher gallium content give more graphitic carbon, which correlates with higher C3H6 selectivity, whereas catalysts with more disordered coke are associated with lower selectivity. However, higher gallium content causes more coke formation, which leads to faster deactivation. This initial study of this family of mixed oxides suggests that an ideal In/Ga ratio may exist whereby catalyst properties may be optimized.
Metal-loaded zeolitic membranes are promising candidates as catalytic membrane reactors. We report a one-step synthesis method to synthesize zeolite membranes containing metal nanoclusters, that has advantages in comparison to multistep methods such as impregnation and ion exchange. Pure-silica MFI zeolite-Pt hybrid membranes were prepared by hydrothermal synthesis with addition of 3-mercaptopropyl-trimethoxysilane (MPS) and a platinum precursor. Composition analysis and mapping by energy-dispersive X-ray spectroscopy (EDX) reveal that Pt ions/clusters are uniformly distributed along the membrane cross-section. High-magnification scanning transmission electron microscopy (STEM) analysis shows that Pt metal clusters in the hybrid zeolite membrane have a diameter distribution in the range of 0.5-2.0 nm. In contrast, a pure-silica MFI membrane synthesized from an MPS-free solution shows negligible incorporation of Pt metal clusters. To characterize the properties of the hybrid (zeolite/metal) membrane, it was used as a catalytic membrane reactor (CMR) for high-temperature propane dehydrogenation (PDH) at 600 °C and 1 atm. The results indicate that Pt metal clusters formed within the MFI zeolite membrane can serve as effective catalysts for high-temperature PDH reaction along with H2 removal via membrane permeation, thereby increasing both conversion and selectivity in relation to a conventional membrane reactor containing an equivalent amount of packed Pt catalyst in contact with an MFI membrane. The hybrid zeolite-Pt CMR also showed stable conversion and selectivity upon extended high-temperature operation (12 h), indicating that encapsulation in the zeolite allowed thermal stabilization of the Pt nanoclusters and reduced catalyst deactivation.
The fatty acid ethyl esters mixture, a fish oil residue obtained after the extraction of omega-3 polyunsaturated fatty esters, has been converted into mixtures of mono-, di-, and triesters of trimethylolpropane by transesterification at 100-140ºC under vacuum with sodium ethoxide as catalyst. This method has shown to be more efficient than the enzymatic transesterification using commercially available lipases. The crude reaction mixture (84% conversion of ethyl esters), enriched in trimethylolpropane triesters (96% selectivity) was characterized and its properties compared with those of the starting ethyl esters mixture and the trimethylolpropane esters obtained from vegetal sources.
Fatty acid esters of 2-ethyl-1-hexanol (EH), 2-hexyl-1-decanol (HD), and isopropanol have been obtained from a mixture of ethyl esters obtained as a fish oil byproduct. Homogeneous base catalysis with alkaline hydroxides and alkoxides has been compared with the use of two commercially available immobilized lipases. The enzymatic methodology is more efficient in the case of the largest alcohol (HD) mainly because of the high stability of the immobilized enzymes upon recovery and reuse. In contrast, the use of a base as a catalyst is highly favorable in the case of isopropanol because of the rather poor activity of the lipases and the low price of the bases. With EH, the activity of lipases is good but the recoverability is not as efficient; hence, basic catalysts are again the most attractive alternative. The mixtures of esters obtained may be useful as hydraulic liquids given their viscosity values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.