Senescent human neutrophils undergo programmed cell death (apoptosis), leading to their recognition and phagocytosis by mature macrophages. At inflamed sites in vivo these processes may represent a neutrophil removal mechanism with the potential to limit the histotoxic capacity of these cells. Phagocytosis can provoke marked proinflammatory responses by macrophages. A macrophage proinflammatory response to the ingestion of apoptotic neutrophils would limit the efficacy of this neutrophil removal mechanism as a component of inflammatory resolution. In the present study we examined two macrophage proinflammatory responses; secretion of the granule enzyme N-acetyl-beta-D-glucosaminidase (NAG) and release of the membrane lipid-derived inflammatory mediator thromboxane A2 (TxA2, measured as TxB2). By contrast with the marked release of NAG and TxB2 elicited by phagocytosis of control particles (opsonised zymosan and immunoglobulin G-coated erythrocytes), macrophage ingestion of apoptotic neutrophils resulted in minimal release of NAG and no release of TxB2; indeed, there was a small depression of TxB2 release that was not due to a toxic effect of neutrophil uptake because macrophages ingesting apoptotic neutrophils retained marked TxB2 responses to subsequent stimulation with opsonised zymosan. Furthermore, there was significant TxB2 release in response to macrophage phagocytosis of apoptotic neutrophils that had been coated with opsonic serum, demonstrating that the lack of macrophage response was determined by the mechanism of recognition rather than the properties of the apoptotic particle itself. These observations are consistent with the hypothesis that macrophage clearance of senscent neutrophils undergoing apoptosis is an injury-limiting mechanism that favors resolution rather than persistence of the inflammatory response and are consistent with observations that the waves of apoptotic cell removal seen in embryological removal and thymic involution do not trigger an inflammatory response.
Elevation of cytosolic calcium (ICa2+I;) has been reported to induce apoptosis in a number of cell types. However, in the neutrophil, which undergoes apoptosis constitutively during aging in vitro, activation by inflammatory mediators elevates ICa2Ji; and prolongs lifespan via inhibition of apoptosis. To examine this paradox, we investigated the effects of modulation of [Ca2" I upon apoptosis of neutrophils in vitro. Calcium ionophores (A23187, ionomycin) retarded apoptosis in neutrophil populations after 20 h (P < 0.001). Conversely, intracellular Ca2+-chelation, using bis-(o-aminophenoxy)-NNNN'-tetraacetic acid (BAPTA) acetoxymethyl ester (AM) promoted apoptosis (P < 0.02). W-7 (an inhibitor of calmodulin) also promoted apoptosis (P < 0.05). Measurements of ICa2+I,, using fura-2, showed (a) increased apoptosis in neutrophil populations was not associated with elevated ICa2I]1, (b) neutrophils cultured with ionophore at concentrations inhibiting apoptosis exhibited transient ( < 1 h) elevations of[Ca2Ijl, to levels previously reported with receptor-mediated stimuli, and (c) BAPTA was able to prevent the elevation of ICa2+Ij and the inhibition of apoptosis produced by ionophore. Modulation of apoptosis occurred without alterations in intracellular pH. Thus, in the neutrophil, unlike lymphoid cells, elevation of ICa2+Ii exerts an inhibitory effect upon apoptosis. Furthermore, these data suggest that transient elevation of ICa2"I elicits signaling events leading to prolonged inhibition of apoptosis. (J. Clin. Invest. 1993. 92:446-455.)
We have described a novel pathway available for the clearance of extravasated granulocytes from inflamed tissues whereby aging granulocytes undergo apoptosis, a process which leads to their phagocytosis by inflammatory macrophages. By contrast with necrosis, which may also be seen at inflamed sites, apoptosis represents a granulocyte fate which by a number of mechanisms would tend to limit inflammatory tissue injury and promote resolution rather than progression of inflammation: (i) apoptosis is responsible for macrophage recognition of senescent neutrophils with intact cell membranes which exclude vital dyes and retain their potentially histotoxic granule contents; (ii) the apoptotic neutrophil loses its ability to secrete granule enzymes on deliberate external stimulation; (iii) the macrophage possesses a huge phagocytic capacity for apoptotic neutrophils which it rapidly ingests and degrades without disgorging neutrophil contents; and (iv) the macrophage utilizes a novel phagocytic recognition mechanism which fails to trigger the release of pro-inflammatory macrophage mediators during the phagocytosis of apoptotic neutrophils. Preliminary characterization of the recognition mechanism implicates the integrin alpha v beta 3 (vitronectin receptor) and CD36 (thrombospondin receptor) on the macrophage surface. Macrophage phagocytosis of apoptotic neutrophils is greatly influenced by the microenvironmental pH and by the presence of cationic molecules. Moreover, it can be specifically modulated by external cytokines and intracellular second messenger systems. By controlling the functional longevity of neutrophil and eosinophil granulocytes and their subsequent removal by macrophages, granulocyte apoptosis, with its potential for modulation by external mediators, is likely to play a key dynamic role in the control of the 'tissue load' of granulocytes at inflamed sites.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.