Objective
Clinical observations of the flexion synergy in individuals with chronic hemiparetic stroke describe coupling of shoulder, elbow, wrist, and finger joints. Yet, experimental quantification of the synergy within a shoulder abduction (SABD) loading paradigm has focused only on shoulder and elbow joints. The paretic wrist and fingers have typically been studied in isolation. Therefore, this study quantified involuntary behavior of paretic wrist and fingers during concurrent activation of shoulder and elbow.
Methods
Eight individuals with chronic moderate-to-severe hemiparesis and four controls participated. Isometric wrist/finger and thumb flexion forces and wrist/finger flexor and extensor electromyograms (EMG) were measured at two positions when lifting the arm: in front of the torso and at maximal reaching distance. The task was completed in the ACT3D robotic device with six SABD loads by paretic, non-paretic, and control limbs.
Results
Considerable forces and EMG were generated during lifting of the paretic arm only, and they progressively increased with SABD load. Additionally, the forces were greater at the maximal reach position than at the position front of the torso.
Conclusions
Flexion of paretic wrist and fingers is involuntarily coupled with certain shoulder and elbow movements.
Significance
Activation of the proximal upper limb must be considered when seeking to understand, rehabilitate, or develop devices to assist the paretic hand.
The intrinsic excitability of spinal motoneurons is mediated in part by the presence of persistent inward currents (PICs), which amplify synaptic input and promote self-sustained firing. Studies using animal models have shown that PICs are greater in extensor motoneurons over flexor motoneurons, but this difference has not yet been demonstrated in humans. The primary objective of this study was to determine whether a similar difference exists in humans by recording from motor units in biceps and triceps brachii during isometric contractions. We compared firing rate profiles of pairs of motor units, in which the firing rate of the lower-threshold "control" unit was used as an indicator of common drive to the higher-threshold "test" unit. The estimated contribution of the PIC was calculated as the difference in firing rate of the control unit at recruitment versus derecruitment of the test unit, a value known as the delta-F (ΔF). We found that ΔF values were significantly higher in triceps brachii (5.4 ± 0.9 imp/s) compared with biceps brachii (3.0 ± 1.4 imp/s; P < 0.001). This difference was still present even after controlling for saturation in firing rate of the control unit, rate modulation of the control unit, and differences in recruitment time between test and control units, which are known to contribute to ΔF variability. We conclude that human elbow flexor and extensor motor units exhibit differences in intrinsic excitability, contributing to different neural motor control strategies between muscle groups.
Patients with hip osteoarthritis demonstrate limited range of motion, muscle weakness and altered biomechanics; however, few studies have evaluated the relationships between physical impairments and movement asymmetries. The purpose of this study was to identify the physical impairments related to movement abnormalities in patients awaiting total hip arthroplasty. We hypothesized that muscle weakness and pain would be related to greater movement asymmetries. Fifty-six subjects who were awaiting total hip arthroplasty were enrolled. Pain was assessed using a 0 to 10 scale, range of motion was assessed with the Harris Hip Score and isometric hip abductor strength was tested using a hand-held dynamometer. Trunk, pelvis and hip angles and moments in the frontal and sagittal planes were measured during walking using three dimensional motion analysis. During gait, subjects had 3.49 degrees less peak hip flexion and 8.82 degrees less extension angles (p<0.001) and had 0.03 Nm/k*m less hip abduction moment on the affected side (p=0.043). Weaker hip muscles were related to greater pelvis (r=−0.291) and trunk (r=−0.332) rotations in the frontal plane. These findings suggest that hip weakness drives abnormal movement patterns at the pelvis and trunk in patients with hip osteoarthritis to a greater degree than hip pain.
Previous studies using robotic devices that focus on the wrist/fingers following stroke provide an incomplete picture of movement dysfunction because they do not consider the abnormal joint torque coupling that occurs during progressive shoulder abduction loading in the paretic upper limb. This letter introduces a device designed to measure isometric flexion/extension forces generated by the fingers, wrist, and thumb during robot-mediated 3-D dynamic movements of the upper limb. Validation data collected from eight participants with chronic hemiparetic stroke are presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.