Infection by the human immunodeficiency virus (HIV) either upregulates or downregulates the expression of several cytokines and interferons (IFNs) that use the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway for signal transduction. However, very little is known on the state of activation of the JAK/STAT pathway after HIV infection either in vivo or in vitro. In this regard, we report here that a constitutive activation of a C-terminal truncated STAT5 (STAT5▵) and of STAT1 occurs in the majority (∼75%) of individuals with progressive HIV disease. We have further demonstrated that, among peripheral blood mononuclear cells (PBMCs), STAT5▵ is activated preferentially in CD4+ T cells. In contrast to a published report, expression of STATs from PBMCs of infected individuals was comparable with that of seronegative donors. In addition, in vitro infection of mitogen-activated PBMCs with a panel of laboratory-adapted and primary HIV strains characterized by differential usage of chemokine coreceptors did not affect STAT protein levels. However, enhanced activation of STAT was observed after in vitro infection of resting PBMCs and nonadherent PBMCs by different viral strains. Thus, constitutive STAT activation in CD4+T lymphocytes represents a novel finding of interest also as a potential new marker of immunological reconstitution of HIV-infected individuals.
To compare the effectiveness of reverse transcription-polymerase chain reaction (RT-PCR), shell vial culture and cytospin assay as laboratory techniques for rapid diagnosis of influenza infections, a retrospective study was carried out on 270 aliquots of oropharyngeal swabs collected from October 1993 to March 1996 and already characterized by standard isolation procedures, and a prospective study in which 65 clinical samples taken from patients with influenza-like syndrome between October 1996 and March 1997 were tested. In the retrospective study, using conventional isolation as the gold standard, the sensitivity of RT-PCR and cytospin assay for virus A was 100% (95% confidence interval (CI), 89.1-100) and for virus B it was 100% (95% CI, 56.1-100) compared with 77.5% (95% CI, 61.1-88.6) and 71.4% (95% CI, 30.3-94.9) for shell vial culture. The specificity of all the three assays was 100% (95% CI, 98.0-100) for virus A and 100% (95% CI, 98.2-100) for virus B. In the prospective study the sensitivity of RT-PCR was greater than that of the other tests considered, both rapid and standard. It is suggested that RT-PCR should be employed in combination with conventional culture techniques in routine diagnosis of influenza infections in order to obtain results more rapidly and to improve virus detection even in circumstances in which standard isolation could be problematic.
Infection by the human immunodeficiency virus (HIV) either upregulates or downregulates the expression of several cytokines and interferons (IFNs) that use the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway for signal transduction. However, very little is known on the state of activation of the JAK/STAT pathway after HIV infection either in vivo or in vitro. In this regard, we report here that a constitutive activation of a C-terminal truncated STAT5 (STAT5▵) and of STAT1 occurs in the majority (∼75%) of individuals with progressive HIV disease. We have further demonstrated that, among peripheral blood mononuclear cells (PBMCs), STAT5▵ is activated preferentially in CD4+ T cells. In contrast to a published report, expression of STATs from PBMCs of infected individuals was comparable with that of seronegative donors. In addition, in vitro infection of mitogen-activated PBMCs with a panel of laboratory-adapted and primary HIV strains characterized by differential usage of chemokine coreceptors did not affect STAT protein levels. However, enhanced activation of STAT was observed after in vitro infection of resting PBMCs and nonadherent PBMCs by different viral strains. Thus, constitutive STAT activation in CD4+T lymphocytes represents a novel finding of interest also as a potential new marker of immunological reconstitution of HIV-infected individuals.
Leader binding protein-1 (LBP-1)/late SV40 factor (LSF) and ying yang-1 (YY1) transcription factors are involved in the regulation of HIV expression. In particular, YY1 and LBP-1 have been shown to cooperate in repressing HIV-1-long terminal repeat reporter gene expression by in vitro cotransfection experiments. However, no information is available on the levels of expression and activation of these transcription factors in PBMC of HIV-infected individuals. Therefore, we have evaluated the expression and DNA binding activity of YY1 and LBP-1 (LSF) in PBMC of HIV-infected individuals before, during, and after administration of IL-2 in association with antiretroviral therapy (ART), a regimen under consideration for broad clinical use in this disease based on its ability to stably raise the absolute number of circulating CD4+ T lymphocytes. Both YY1- and LBP-1 (LSF)-DNA binding were profoundly down-modulated during administration of IL-2/ART, and a proteolytic activity probably responsible for the reduced expression of the two cellular transcription factors was found activated in PBMC of individuals receiving the immunotherapeutic regimen. This study is the first evidence of modulation of cellular transcription factors following IL-2/ART administration and provides a potential correlate of the transient raises in plasma viremia early reported in patients receiving IL-2 in the absence of ART, thus underscoring the importance of always administering this cytokine to HIV-infected individuals together with potent antiretrovirals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.