The estrogen receptor alpha (ERα) is a ligand-activated transcription factor whose activity is modulated by its interaction with multiple protein complexes. In this work, we have identified the protein interferon alpha inducible protein 27 (IFI27/ISG12) as a novel ERα-associated protein. IFI27/ISG12 transcription is regulated by interferon and estradiol and its overexpression is associated to reduced overall survival in ER+ breast cancer patients but its function in mammary gland tissue remains elusive. In this study we showed that overexpression of IFI27/ISG12 in breast cancer cells attenuates ERα transactivation activity and the expression of ERα-dependent genes. Our results demonstrated that IFI27/ISG12 overexpression in MCF-7 cells reduced their proliferation rate in 2-D and 3-D cell culture assays and impaired their ability to migrate in a wound-healing assay. We show that IFI27/ISG12 downregulation of ERα transactivation activity is mediated by its ability to facilitate the interaction between ERα and CRM1/XPO1 that mediates the nuclear export of large macromolecules to the cytoplasm. IFI27/ISG12 overexpression was shown to impair the estradiol-dependent proliferation and tamoxifen-induced apoptosis in breast cancer cells. Our results suggest that IFI27/ISG12 may be an important factor in regulating ERα activity in breast cancer cells by modifying its nuclear versus cytoplasmic protein levels. We propose that IFI27/ISG12 may be a potential target of future strategies to control the growth and proliferation of ERα−positive breast cancer tumors.
In recent years, knowledge of the role that protein methylation is playing on the physiopathogenesis of bacteria has grown. In Mycobacterium tuberculosis, methylation of the heparin binding hemagglutinin adhesin modulates the immune response, making this protein a subunit vaccine candidate. Through its C-terminal lysine-rich domain, this surface antigen interacts with heparan sulfate proteoglycans present in non-phagocytic cells, leading to extrapulmonary dissemination of the pathogen. In this study, the adhesin was expressed as a recombinant methylated protein in Rhodococcus erythropolis L88 and it was found associated to lipid droplets when bacteria were grown under nitrogen limitation. In order to delve into the role methylation could have in host–pathogen interactions, a comparative analysis was carried out between methylated and unmethylated protein produced in Escherichia coli. We found that methylation had an impact on lowering protein isoelectric point, but no differences between the proteins were found in their capacity to interact with heparin and A549 epithelial cells. An important finding was that HbhA is a Fatty Acid Binding Protein and differences in the conformational stability of the protein in complex with the fatty acid were observed between methylated and unmethylated protein. Together, these results suggest that the described role for this mycobacteria protein in lipid bodies formation could be related to its capacity to transport fatty acids. Obtained results also provide new clues about the role HbhA methylation could have in tuberculosis and point out the importance of having heterologous expression systems to obtain modified proteins.
Los anticuerpos monoclonales son una de las herramientas más revolucionarias en el área de la biomedicina por tener aplicaciones inmunoterapéuticas e inmunodiagnósticas. Sin embargo, el rápido avance tecnológico que demandan estas áreas genera la exploración de nuevas biomoléculas. El descubrimiento de anticuerpos compuestos únicamente por cadenas pesadas, presentes de forma natural en el suero de los camélidos y en algunas especies de tiburón, son motivo de estudio desde las últimas décadas como una alternativa a los anticuerpos convencionales. Estos poseen una región de reconocimiento antigénico, que consiste en un dominio variable por cada cadena, conocidos como anticuerpos de un solo dominio o nanoanticuerpos. Estas biomoléculas se caracterizan por tener un tamaño reducido, alta especificidad, estabilidad y bajo costo en su producción; propiedades que las convierten en una herramienta altamente versátil. En la presente revisión se abordarán aspectos relevantes de los nanoanticuerpos, como su descubrimiento, características estructurales, desarrollo en el campo de la biotecnología y su potencial de aplicación en enfermedades como el cáncer y en la identificación de microorganismos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.