Increased mitochondrial ceramide levels are associated with the initiation of apoptosis. There is evidence that ceramide is causal. Thus, the conversion of the precursor, dihydroceramide, to ceramide by the enzyme dihydroceramide desaturase may be important in preparing the cell for apoptosis. Ceramide can initiate apoptosis by permeabilizing the mitochondrial outer membrane to apoptosisinducing proteins. However, the mitochondrion's ability to produce ceramide may be limited by its proteome. Here, we show that ceramide synthesized in isolated mammalian endoplasmic reticulum (ER) vesicles from either C 8 -dihydroceramide or sphingosine to produce long-chain ceramide can transfer to isolated mitochondria. The rate of transfer is consistent with a simple collision model. The transfer of the long-chain ceramide is faster than expected for an uncatalyzed process. Sufficient ceramide is transferred to permeabilize the outer membrane to cytochrome c and adenylate kinase. The mitochondria-associated membranes, ER-like membranes that are tightly associated with isolated mitochondria, can produce enough ceramide to permeabilize the outer membrane transiently. Thus, this ceramide exchange obviates the need for a complete ceramide de novo pathway in mitochondria to increase ceramide levels to the critical value required for functional changes, such as ceramide channel self-assembly followed by protein release.-Stiban, J., L. Caputo, and M. Colombini. Ceramide synthesis in the endoplasmic reticulum can permeabilize mitochondria to proapoptotic proteins. J. Lipid Res. 2008. 49: 625-634.
Studies in experimental animal models have demonstrated that chemokines produced by tumor cells attract chemokine receptor-positive T lymphocytes into the tumor area. However, in cancer patients, the role of chemokines in T lymphocyte trafficking toward human tumor cells is relatively unexplored. In the present study, the migration of a melanoma patient's CTL toward autologous tumor cells has been studied in a novel three-dimensional organotypic melanoma culture. In this model, CTL migrated toward tumor cells, resulting in tumor cell apoptosis. CTL migration was mediated by the CC chemokine receptor (CCR)4 expressed by the CTL and the CC chemokine ligand (CCL)2 secreted by the tumor cells, as evidenced by blockage of CTL migration by CCL2 or antibodies to CCL2 or CCR4. These results were confirmed in a Transwell migration assay in which the CTL actively migrated toward isolated CCL2 and migration was inhibited by anti-CCR4 antibody. These studies, together with previous studies in mice indicating regression of CCL2-transduced tumor cells, suggest that CCL2 may be useful as an immunotherapeutic agent for cancer patients.
Mutated BRAF (BRAF V600E ) is a potential immunotherapeutic target for melanoma because of its tumor specificity and expression in the majority of these lesions derived from different patients. BRAF V600E is expressed intracellularly and not on the cell surface, therefore providing a target for T cells but not B cells. Demonstration of patients' T cell responses to BRAF V600E would suggest the feasibility of active specific immunotherapy targeting the mutation in these patients. In the present study, BRAF V600E peptides with putative binding sites for human leukocyte antigen (HLA)-A2 were used to stimulate T lymphocytes of HLA-A2-positive melanoma patients. Four of five patients with BRAF V600E -positive lesions showed lymphoproliferative responses to BRAF V600E peptide stimulation. These responses were specific for the mutated epitope and HLA-A2 was restricted in three patients. Lymphocytes from these three patients were cytotoxic against HL A-A2-matched BRAF V600E -positive melanoma cells. None of the four patients with BRAF V600E -negative lesions and none of five healthy donors had lymphoproliferative responses specific for the mutated epitope. The high prevalence (f50%) of HLA-A2 among melanoma patients renders HLA-A2-restricted BRAF V600E peptides attractive candidate vaccines for these patients. (Cancer Res 2006; 66(6): 3287-93)
Studies in experimental animal models have demonstrated that chemokines produced by tumor cells attract chemokine receptor-positive T lymphocytes into the tumor area, which may lead to tumor growth inhibition in vitro and in vivo. However, in cancer patients, the role of chemokines in T lymphocyte trafficking toward human tumor cells is relatively unexplored. In the present study, the role of chemokines and their receptors in the migration of a melanoma patient’s CTL toward autologous tumor cells has been studied in a novel organotypic melanoma culture, consisting of a bottom layer of collagen type I with embedded fibroblasts followed successively by a tumor cell layer, collagen/fibroblast separating layer, and, finally, a top layer of collagen with embedded fibroblasts and T cells. In this model, CTL migrated from the top layer through the separating layer toward tumor cells, resulting in tumor cell apoptosis. CTL migration was mediated by chemokine receptor CXCR4 expressed by the CTL and CXCL12 (stromal cell-derived factor 1α) secreted by tumor cells, as evidenced by blockage of CTL migration by Abs to CXCL12 or CXCR4, high concentrations of CXCL12 or small molecule CXCR4 antagonist. These studies, together with studies in mice indicating regression of CXCL12-transduced tumor cells, followed by regression of nontransduced challenge tumor cells, suggest that CXCL12 may be useful as an immunotherapeutic agent for cancer patients, when transduced into tumor cells, or fused to anti-tumor Ag Ab or tumor Ag.
Adoptive immunotherapy of cancer patients with cytolytic T lymphocytes (CTL) has been hampered by the inability of the CTL to home into tumors in vivo. Chemokines can attract T lymphocytes to the tumor site, as demonstrated in animal models, but the role of chemokines in T-lymphocyte trafficking toward human tumor cells is relatively unexplored. In the present study, the role of chemokines and their receptors in the migration of a colon carcinoma (CC) patient's CTL toward autologous tumor cells has been studied in a novel three-dimensional organotypic CC culture. CTL migration was mediated by chemokine receptor CXCR3 expressed by the CTL and CXCL11 chemokine secreted by the tumor cells. Excess CXCL11 or antibodies to CXCL11 or CXCR3 inhibited migration of CTL to tumor cells. T cell and tumor cell analyses for CXCR3 and CXCL11 expression, respectively, in ten additional CC samples, may suggest their involvement in other CC patients. Our studies, together with previous studies indicating angiostatic activity of CXCL11, suggest that CXCL11 may be useful as an immunotherapeutic agent for cancer patients when transduced into tumor cells or fused to tumor antigen-specific Ab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.