We consider cosmological perturbations around homogeneous and isotropic spacetimes minimally coupled to a scalar field and present a formulation which is designed to preserve covariance. We truncate the action at quadratic perturbative order and particularize our analysis to flat compact spatial sections and a field potential given by a mass term, although the formalism can be extended to other topologies and potentials. The perturbations are described in terms of Mukhanov-Sasaki gauge invariants, linear perturbative constraints, and variables canonically conjugate to them. This set is completed into a canonical one for the entire system, including the homogeneous degrees of freedom. We find the global Hamiltonian constraint of the model, in which the contribution of the homogeneous sector is corrected with a term quadratic in the perturbations, that can be identified as the Mukhanov-Sasaki Hamiltonian in our formulation. We then adopt a hybrid approach to quantize the model, combining a quantum representation of the homogeneous sector with a more standard field quantization of the perturbations. Covariance is guaranteed in this approach inasmuch as no gauge fixing is adopted. Next, we adopt a Born-Oppenheimer ansatz for physical states and show how to obtain a Schrödinger-like equation for the quantum evolution of the perturbations. This evolution is governed by the Mukhanov-Sasaki Hamiltonian, with the dependence on the homogeneous geometry evaluated at quantum expectation values, and with a time parameter defined also in terms of suitable expectation values on that geometry. Finally, we derive effective equations for the dynamics of the Mukhanov-Sasaki gauge invariants, that include quantum contributions, but have the same ultraviolet limit as the classical equations. They provide the master equation to extract predictions about the power spectrum of primordial scalar perturbations.
We study cosmological perturbations in the framework of Loop Quantum Cosmology, using a hybrid quantization approach and Mukhanov-Sasaki variables. The formulation in terms of these gauge invariants allows one to clarify the independence of the results on choices of gauge and facilitates the comparison with other approaches proposed to deal with cosmological perturbations in the context of Loop Quantum Theory. A kind of Born-Oppenheimer ansatz is employed to extract the dynamics of the inhomogeneous perturbations, separating them from the degrees of freedom of the Friedmann-Robertson-Walker geometry. With this ansatz, we derive an approximate Schrödinger equation for the cosmological perturbations and study its range of validity. We also prove that, with an alternate factor ordering, the dynamics deduced for the perturbations is similar to the one found in the so-called dressed metric approach, apart from a possible scaling of the matter field in order to preserve its unitary evolution in the regime of Quantum Field Theory in a curved background and some quantization prescription issues. Finally, we obtain the effective equations that are naturally associated with the Mukhanov-Sasaki variables, both with and without introducing the Born-Oppenheimer ansatz, and with the different factor orderings that we have studied.
We study the Fock quantization of scalar fields in (generically) time dependent scenarios, focusing on the case in which the field propagation occurs in –either a background or effective– spacetime with spatial sections of flat compact topology. The discussion finds important applications in cosmology, like e.g. in the description of test Klein-Gordon fields and scalar perturbations in Friedmann-Robertson-Walker spacetime in the observationally favored flat case. Two types of ambiguities in the quantization are analyzed. First, the infinite ambiguity existing in the choice of a Fock representation for the canonical commutation relations, understandable as the freedom in the choice of inequivalent vacua for a given field. Besides, in cosmological situations, it is customary to scale the fields by time dependent functions, which absorb part of the evolution arising from the spacetime, which is treated classically. This leads to an additional ambiguity, this time in the choice of a canonical pair of field variables. We show that both types of ambiguities are removed by the requirements of (a) invariance of the vacuum under the symmetries of the three-torus, and (b) unitary implementation of the dynamics in the quantum theory. In this way, one arrives at a unique class of unitarily equivalent Fock quantizations for the system. This result provides considerable robustness to the quantum predictions and renders meaningful the confrontation with observation.
Abstract. We investigate the consequences of the hybrid quantization approach for primordial perturbations in loop quantum cosmology, obtaining predictions for the cosmic microwave background and comparing them with data collected by the Planck mission. In this work, we complete previous studies about the scalar perturbations and incorporate tensor modes. We compute their power spectrum for a variety of vacuum states. We then analyze the tensorto-scalar ratio and the consistency relation between this quantity and the spectral index of the tensor power spectrum. We also compute the temperature-temperature, electric-electric, temperature-electric, and magnetic-magnetic correlation functions. Finally, we discuss the effects of the quantum geometry in these correlation functions and confront them with observations.arXiv:1702.06036v2 [gr-qc]
Recently, a lot of attention has been paid to the modifications of the power spectrum of primordial fluctuations caused by quantum cosmology effects. The origin of these modifications is corrections to the Mukhanov-Sasaki equations that govern the propagation of the primeval cosmological perturbations. The specific form of these corrections depends on a series of details of the quantization approach and of the prescription followed to implement it. Generally, the complexity of the theoretical quantum formulation is simplified in practice appealing to a semiclassical or effective approximation in order to perform concrete numerical computations. In this work, we introduce technical tools and design a procedure to deal with these quantum corrections beyond the most direct approximations employed so far in the literature. In particular, by introducing an interaction picture, we extract the quantum dynamics of the homogeneous geometry in absence of scalar field potential and inhomogeneities, dynamics that has been intensively studied and that can be integrated. The rest of our analysis focuses on the interaction evolution, putting forward methods to cope with it. The ultimate aim is to develop treatments that increase our ability to discriminate between the predictions of different quantization proposals for cosmological perturbations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.