Despite promising preliminary results in treating fibromyalgia (FM) pain, no neuromodulation technique has been adopted in clinical practice because of limited efficacy, low response rate, or poor tolerability. This phase II open-label trial aims to define a methodology for a clinically effective treatment of pain in FM by establishing treatment protocols and screening procedures to maximize efficacy and response rate. High-definition transcranial direct current stimulation (HD-tDCS) provides targeted subthreshold brain stimulation, combining tolerability with specificity. We aimed to establish the number of HD-tDCS sessions required to achieve a 50% FM pain reduction, and to characterize the biometrics of the response, including brain network activation pain scores of contact heat-evoked potentials. We report a clinically significant benefit of a 50% pain reduction in half (n = 7) of the patients (N = 14), with responders and nonresponders alike benefiting from a cumulative effect of treatment, reflected in significant pain reduction (P = .035) as well as improved quality of life (P = .001) over time. We also report an aggregate 6-week response rate of 50% of patients and estimate 15 as the median number of HD-tDCS sessions to reach clinically meaningful outcomes. The methodology for a pivotal FM neuromodulation clinical trial with individualized treatment is thus supported.
Transcranial pulsed current stimulation (tPCS) is emerging as an option in the field of neuromodulation; however, little is known about its effects on cognition and behavior and its neurophysiological correlates as indexed by autonomic responses. Our aim was to identify the effects of tPCS on arithmetic processing and risk-taking behavior, and to further categorize physiological autonomic responses by heart rate variability (HRV) and electrodermal activity measurements before, during, and after exposure to task performance and stimulation. Thirty healthy volunteers were randomized to receive a single session of sham or active stimulation with a current intensity of 2 mA and a random frequency between 1 and 5 Hz. Our results showed that tPCS has a modest and specific effect on cognitive performance as indexed by the cognitive tasks chosen in this study. There was a modest effect of active tPCS only on performance facilitation on a complex-level mathematical task as compared to sham stimulation. On autonomic responses, we observed that HRV total power increased while LF/HF ratio decreased in the tPCS active group compared to sham. There were no group differences for adverse effects. Based on our results, we conclude that tPCS, in healthy subjects, has a modest and specific cognitive effect as shown by the facilitation of arithmetical processing on complex mathematical task. These effects are accompanied by modulation of the central autonomic network providing sympathetic-vagal balance during stressful conditions. Although behavioral results were modest, they contribute to the understanding of tPCS effects and cognitive enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.