The ethnopharmacological approach toward the understanding and appraisal of traditional and herbal medicines is characterized by the inclusions of the social as well as the natural sciences. Anthropological field-observations describing the local use of nature-derived medicines are the basis for ethnopharmacological enquiries. The multidisciplinary scientific validation of indigenous drugs is of relevance to modern societies at large and helps to sustain local health care practices. Especially with respect to therapies related to aging related, chronic and infectious diseases traditional medicines offer promising alternatives to biomedicine. Bioassays applied in ethnopharmacology represent the molecular characteristics and complexities of the disease or symptoms for which an indigenous drug is used in “traditional” medicine to variable depth and extent. One-dimensional in vitro approaches rarely cope with the complexity of human diseases and ignore the concept of polypharmacological synergies. The recent focus on holistic approaches and systems biology in medicinal plant research represents the trend toward the description and the understanding of complex multi-parameter systems. Ethnopharmacopoeias are non-static cultural constructs shaped by belief and knowledge systems. Intensified globalization and economic liberalism currently accelerates the interchange between local and global pharmacopoeias via international trade, television, the World Wide Web and print media. The increased infiltration of newly generated biomedical knowledge and introduction of “foreign” medicines into local pharmacopoeias leads to syncretic developments and generates a feedback loop. While modern and post-modern cultures and knowledge systems adapt and transform the global impact, they become more relevant for ethnopharmacology. Moreover, what is traditional, alternative or complementary medicine depends on the adopted historic-cultural perspective.
Results: We identified a core group of 170 medicinal species used on either islands, which accumulate 74% of all citations and are best represented in De Materia Medica. The 15 most frequently used species of both islands demonstrate intriguing parallels for indications with Dioscorides' work. Conclusion:The ethnopharmacopoeia of Sicily and Sardinia are shallow stereotypes of the different editions of De Materia Medica and talking of oral tradition in this respect is a contradiction. The medicinal species of Sardinia and Sicily are largely widespread and common species, including many weeds, which are not facing threat of extinction. Therefore, using traditional medicinal practices as an argument for conservation biology or vice versa is not scientifically sound.
ETHNOPHARMACOLOGICAL RELEVANCE: Ethnopharmacology focuses on the understanding of local and indigenous use of medicines and therefore an emic approach is inevitable. Often, however, standard biomedical disease classifications are used to describe and analyse local diseases and remedies. Standard classifications might be a valid tool for cross-cultural comparisons and bioprospecting purposes but are not suitable to understand the local perception of disease and use of remedies. Different standard disease classification system exist but their suitability for cross-cultural comparisons of ethnomedical data has never been assessed. Depending on the research focus, (I) ethnomedical, (II) cross-cultural, and (III) bioprospecting, we provide suggestions for the use of specific classification systems. MATERIALS AND METHODS: We analyse three different standard biomedical classification systems (the International Classification of Diseases (ICD); the Economic Botany Data Collection Standard (EBDCS); and the International Classification of Primary Care (ICPC)), and discuss their value for categorizing diseases of ethnomedical systems and their suitability for cross-cultural research in ethnopharmacology. Moreover, based on the biomedical uses of all approved plant derived biomedical drugs, we propose a biomedical therapy-based classification system as a guide for the discovery of drugs from ethnopharmacological sources. RESULTS: Widely used standards, such as the International Classification of Diseases (ICD) by the WHO and the Economic Botany Data Collection Standard (EBDCS) are either technically challenging due to a categorization system based on clinical examinations, which are usually not possible during field research (ICD) or lack clear biomedical criteria combining disorders and medical effects in an imprecise and confusing way (EBDCS). The International Classification of Primary Care (ICPC), also accepted by the WHO, has more in common with ethnomedical reality than the ICD or the EBDCS, as the categories are designed according to patient's perceptions and are less influenced by clinical medicine. Since diagnostic tools are not required, medical ethnobotanists and ethnopharmacologists can easily classify reported symptoms and complaints with the ICPC in one of the "chapters" based on 17 body systems, psychological and social problems. Also the biomedical uses of plant-derived drugs are classifiable into 17 broad organ-and therapy-based use-categories but can easily be divided into more specific subcategories. CONCLUSIONS: Depending on the research focus (I-III) we propose the following classification systems. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could aff...
The methanol extract from Hypericum hircinum leaves exhibited in vitro inhibition of monoamine oxidases (MAO). Bioassay-guided fractionation led to the isolation of quercetin and five compounds identified for the first time from H. hircinum. Quercetin was the only compound with a selective inhibitory activity against MAO-A, with an IC50 value of 0.010 microM. To explain MAO selective inhibition at the molecular level, a computational study was carried out by conformational search and docking techniques using recently determined crystallographic models of both enzymatic isoforms. An in vivo study in mice was carried out using the forced swimming test in order to elucidate the behavioral effects of quercetin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.