Naturally occurring photonic structures are responsible for the bright and vivid coloration in a large variety of living organisms. Despite efforts to understand their biological functions, development, and complex optical response, little is known of the underlying genes involved in the development of these nanostructures in any domain of life. Here, we used colonies as a model system to demonstrate that genes responsible for gliding motility, cell shape, the stringent response, and tRNA modification contribute to the optical appearance of the colony. By structural and optical analysis, we obtained a detailed correlation of how genetic modifications alter structural color in bacterial colonies. Understanding of genotype and phenotype relations in this system opens the way to genetic engineering of on-demand living optical materials, for use as paints and living sensors.
BackgroundNeisseria meningitidis is an inhabitant of the mucosal surfaces of the human nasopharynx. We recently demonstrated that the secreted meningococcal Two-partner secretion protein A (TpsA) is involved in interbacterial competition. The C-terminal end of the large TpsA protein contains a small toxic domain that inhibits the growth of target bacteria. The producing cells are protected from this toxic activity by a small immunity protein that is encoded by the gene immediately downstream of the tpsA gene. Further downstream on the chromosome, a repertoire of toxic modules, designated tpsC cassettes, is encoded that could replace the toxic module of TpsA by recombination. Each tpsC cassette is associated with a gene encoding a cognate immunity protein.ResultsBlast searchers using the toxic domains of TpsA and TpsC proteins as queries identified homologies with the C-terminal part of neisserial MafB proteins, which, for the rest, showed no sequence similarity to TpsA proteins. On the chromosome, mafB genes are part of genomic islands, which include cassettes for additional toxic modules as well as genes putatively encoding immunity proteins. We demonstrate that a MafB protein of strain B16B6 inhibits the growth of a strain that does not produce the corresponding immunity protein. Assays in E. coli confirmed that the C-terminal region of MafB is responsible for toxicity, which is inhibited by the cognate immunity protein. Pull-down assays revealed direct interaction between MafB toxic domains and the cognate immunity proteins.ConclusionsThe meningococcal MafB proteins are novel toxic proteins involved in interbacterial competition.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-015-0493-6) contains supplementary material, which is available to authorized users.
Vivid colours found in living organisms are often the result of scattering from hierarchical nanostructures, where the interplay between order and disorder in their packing defines visual appearance. In the case of Flavobacterium IR1, the complex arrangement of the cells in polycrystalline three-dimensional lattices is found to be a distinctive fingerprint of colony organization. By combining analytical analysis of the angle-resolved scattering response of in vivo bacterial colonies with numerical modelling, we show that we can assess the inter-cell distance and cell diameter with a resolution below 10 nm, far better than what can be achieved with conventional electron microscopy, suffering from preparation artefacts. Retrieving the role of disorder at different length scales from the salient features in the scattering response enables a precise understanding of the structural organization of the bacteria.
Flavobacterium IR1 is a gliding bacterium with a high degree of colonial organization as a 2D photonic crystal, resulting in vivid structural coloration when illuminated. Enterobacter cloacae B12, an unrelated bacterium, was isolated from the brown macroalga Fucus vesiculosus from the same location as IR1. IR1 was found to be a predator of B12. A process of surrounding, infiltration, undercutting and killing of B12 supported improved growth of IR1. A combination of motility and capillarity facilitated the engulfment of B12 colonies by IR1. Predation was independent of illumination. Mutants of IR1 that formed photonic crystals less effectively than the wild type were reduced in predation. Conversely, formation of a photonic crystal was not advantageous in resisting predation by Rhodococcus spp. PIR4. These observations suggest that the organization required to create structural colour has a biological function (facilitating predation) but one that is not directly related to the photonic properties of the colony. This work is the first experimental evidence supporting a role for this widespread type of cell organization in the Flavobacteriia.
MafB proteins are toxins secreted by Neisseria spp. which are involved in interbacterial competition. Their secretion mechanism has so far not been elucidated. Each strain can produce several MafB variants. On the chromosome, the mafB genes are localized on genomic islands also containing mafA genes. MafA proteins have a role in virulence with reported activities in adhesion and transcytosis of pathogenic Neisseria, a priori unrelated to MafB activities. In this study, we investigated the possible involvement of MafA in the transport of MafB across the outer membrane of Neisseria meningitidis . In wild-type strains, proteolytic fragments of MafB proteins were detected in the extracellular medium. In the absence of MafA, secretion was abrogated, and, in the case of MafB I , full-length and truncated polypeptides were detected inside the cells and inside outer-membrane vesicles. MafB I secretion required its cognate MafA, whereas MafB III could use any MafA. Heterologous expression in Escherichia coli showed that MafB III is transported to a cell-surface-exposed, i.e. protease-accessible, location in a MafA-dependent way. MafA itself was found to be localized to the outer membrane, forming large oligomeric complexes. As homologs were found in diverse bacteria, the Maf system represents a new protein secretion system in Gram-negative bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.