The persistent nature of chronic wounds leaves them highly susceptible to invasion by a variety of pathogens that have the ability to construct an extracellular polymeric substance (EPS). This EPS makes the bacterial population, or biofilm, up to 1,000-fold more antibiotic tolerant than planktonic cells and makes wound healing extremely difficult. Thus, compounds which have the ability to degrade biofilms, but not host tissue components, are highly sought after for clinical applications. In this study, we examined the efficacy of two glycoside hydrolases, ␣-amylase and cellulase, which break down complex polysaccharides, to effectively disrupt Staphylococcus aureus and Pseudomonas aeruginosa monoculture and coculture biofilms. We hypothesized that glycoside hydrolase therapy would significantly reduce EPS biomass and convert bacteria to their planktonic state, leaving them more susceptible to conventional antimicrobials. Treatment of S. aureus and P. aeruginosa biofilms, grown in vitro and in vivo, with solutions of ␣-amylase and cellulase resulted in significant reductions in biomass, dissolution of the biofilm, and an increase in the effectiveness of subsequent antibiotic treatments. These data suggest that glycoside hydrolase therapy represents a potential safe, effective, and new avenue of treatment for biofilm-related infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.