Syndrome coronavirus 2 (SARS-CoV-2) pandemic is causing a second outbreak significantly delaying the hope for the virus’ complete eradication. In the absence of effective vaccines, we need effective treatments with low adverse effects that can treat hospitalized patients with COVID-19 disease. In this study, we determined the existence of SARS-CoV-2-specific T cells within CD45RA– memory T cells in the blood of convalescent donors. Memory T cells can respond quickly to infection and provide long-term immune protection to reduce the severity of COVID-19 symptoms. Also, CD45RA– memory T cells confer protection from other pathogens encountered by the donors throughout their life. It is of vital importance to resolve other secondary infections that usually develop in patients hospitalized with COVID-19. We found SARS-CoV-2-specific memory T cells in all of the CD45RA– subsets (CD3+, CD4+, and CD8+) and in the central memory and effector memory subpopulations. The procedure for obtaining these cells is feasible, easy to implement for small-scale manufacture, quick and cost-effective, involves minimal manipulation, and has no GMP requirements. This biobank of specific SARS-CoV-2 memory T cells would be immediately available “off-the-shelf” to treat moderate/severe cases of COVID-19, thereby increasing the therapeutic options available for these patients.
SARS-CoV-2 is causing a second outbreak so the hope for its complete eradication is far from happening. In the absence of effective vaccines, it is mandatory to find effective treatments with low adverse effects able to treat hospitalized patients with COVID-19 disease. In this work, we determined the existence of SARS-CoV-2 specific T cells within the CD45RA- T memory cells from the blood of convalescent donors. Memory T cells can respond quickly to the infection and provide long-term immune protection to reduce the severity of the COVID-19 symptoms. Also, CD45RA- memory T cells confer protection from other pathogens the donors encountered in their life. This is vital to clear other secondary infections usually developed in hospitalized COVID-19 patients. SARS-CoV-2 specific memory T cells were found within all the CD45RA- subsets CD3+, CD4+, CD8+, and in the central memory and effector memory subpopulations. The procedure to obtain the cells is feasible, easy to implement for small scale manufacture, quick and cost-effective involving minimal manipulation, and without GMP condition requirements. This biobank of specific SARS-CoV-2 memory T cells would be immediately available off-the-shelf to treat moderate/severe cases of COVID-19 increasing the therapeutic options available for these patients.
IntroductionNatural killer (NK) cells are lymphocytes from the innate immune system part of the first defense barrier against infected and transformed cells, representing 5%-15% of peripheral blood lymphocytes. The cytotoxic capacity of NK cells is controlled by a balance between inhibitory and activating NK receptors expressed on their surface, which recognize and interact with the ligands on stressed cells. The cytokines involved in NK cell activation, proliferation, survival, and cytotoxicity are signaled mainly through the Janus kinase and signal transducer and activator of transcription proteins (JAK/STAT) pathway. NK cells are also activated in response to pathogens through Toll-like receptors (TLRs) expressed on their surface. Ruxolitinib is a specific JAK1/2 inhibitor approved for treating myelofibrosis and for steroid-refractory acute and chronic graft-versus-host disease (SR-GvHD).MethodsPurified NK cells from healthy donors were stimulated with two TOLL-like receptor ligands, LPS and CpG, in the presence of different concentrations of Ruxolitinib.ResultsThis study showed the effects of ruxolitinib on TLR4 and TLR9 ligand-activated NK cells from healthy donors. Ruxolitinib did not completely inhibit STAT3 phosphorylation and had a moderate effect on NK cell cytokine activation via the TLR pathway. Only the highest doses of ruxolitinib led to a decrease in the pro-inflammatory cytokines tumor necrosis factor α, interferon-γ, interleukin-6, and interleukin-1β. The cytotoxic capacity of stimulated NK cells versus K562, SEM, and MV-4-11 cell lines was reduced by increasing doses of ruxolitinib, but it was not completely abolished and we observed no major changes in degranulation capacity. Phenotypic changes were observed in activated NK cells in the presence of ruxolitinib. In a small cohort of pediatric patients treated with ruxolitinib for SR-GvHD, we observed no decrease in NK cell counts; however, further prospective studies with larger cohorts are necessary to confirm this finding.DiscussionIn summary, our results showed that the functional capabilities and phenotype of NK cells activated through TLR4/9 agonists were not completely abolished by the inhibition of the JAK-STAT pathway by ruxolitinib.
Central nervous system (CNS) tumours comprise 25% of the paediatric cancer diagnoses and are the leading cause of cancer-related death in children. Current treatments for paediatric CNS tumours are far from optimal and fail for those that relapsed or are refractory to treatment. Besides, long-term sequelae in the developing brain make it mandatory to find new innovative approaches. Chimeric antigen receptor T cell (CAR T) therapy has increased survival in patients with B-cell malignancies, but the intrinsic biological characteristics of CNS tumours hamper their success. The location, heterogeneous antigen expression, limited infiltration of T cells into the tumour, the selective trafficking provided by the blood–brain barrier, and the immunosuppressive tumour microenvironment have emerged as the main hurdles that need to be overcome for the success of CAR T cell therapy. In this review, we will focus mainly on the characteristics of the deadliest high-grade CNS paediatric tumours (medulloblastoma, ependymoma, and high-grade gliomas) and the potential of CAR T cell therapy to increase survival and patients’ quality of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.