ABSTRACT:Cotton cellulose with different % NaOH treatments and graft copolymers of cellulose prepared with vinyl acetate (AV) and methyl acrylate (MA), and Ce(IV) ion as an initiator were submitted to biodegradation conditions. Cellulose is a biopolymer consisting solely of glucose units, and, consequently, is also easily biodegradable. Nevertheless, modified cellulose, for example, by graft copolymerization, shows an increased resistance to biodegradation. The aim of this work was to study by calorimetric and dynamic-mechanical analysis how the chemical modification of cellulose affects its biodegradability. From the obtained results some information has also been deduced about the composition and mechanical behavior of the vinylic grafted chains.
The combination of flexible-printed substrates and conventional electronics leads to flexible hybrid electronics. When fabrics are used as flexible substrates, two kinds of problems arise. The first type is related to the printing of the tracks of the corresponding circuit. The second one concerns the incorporation of conventional electronic devices, such as integrated circuits, on the textile substrate. Regarding the printing of tracks, this work studies the optimal design parameters of screen-printed silver tracks on textiles focused on printing an electronic circuit on a textile substrate. Several patterns of different widths and gaps between tracks were tested in order to find the best design parameters for some footprint configurations. With respect to the incorporation of devices on textile substrates, the paper analyzes the soldering of surface mount devices on fabric substrates. Due to the substrate’s nature, low soldering temperatures must be used to avoid deformations or damage to the substrate caused by the higher temperatures used in conventional soldering. Several solder pastes used for low-temperature soldering are analyzed in terms of joint resistance and shear force application. The results obtained are satisfactory, demonstrating the viability of using flexible hybrid electronics with fabrics. As a practical result, a simple single-layer circuit was implemented to check the results of the research.
Grapefruit is a cold-sensitive citrus fruit, and freezing can spoil the harvest when the fruit is still on the tree and even later during manufacturing and transport due to inappropriate postharvest management. This study performed a specific Electric Impedance Spectroscopy (EIS) analysis and statistical data treatment to obtain an EIS and Artificial Neural Networks (ANN)-based model for early freeze-damage detection in grapefruit showing a Correct Correlation Rate of 100%. Additionally, Cryo-Field Emission Scanning Electron Microscopy observations were conducted on both fresh and frozen/thawed samples, analyzing the different impedance responses in order to understand the biological changes in the tissue. Finally, a modified Hayden electric equivalent model was parameterized to simulate the impedance response electrically and link the electric behavior of biological tissue to the change in its properties due to freezing. The developed technique is introduced as an alternative to the traditional ones, as it is fast, economic, and easy to carry out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.