These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer‐reviewed by leading experts in the field, making this an essential research companion.
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
An open-label, first-in-human phase 1/2 study is being conducted to evaluate the safety and efficacy of pancreatic endoderm cells (PECs) implanted in non-immunoprotective macroencapsulation devices for the treatment of type 1 diabetes. We report an analysis on 1 year of data from the first cohort of 15 patients from a single trial site that received subcutaneous implantation of cell products combined with an immunosuppressive regimen. Implants were well tolerated with no teratoma formation or severe graft-related adverse events. After implantation, patients had increased fasting C-peptide levels and increased glucose-responsive C-peptide levels and developed mixed meal-stimulated C-peptide secretion. There were immunosuppression-related transient increases in circulating regulatory T cells, PD1 high T cells, and IL17A + CD4 + T cells. Explanted grafts contained cells with a mature b cell phenotype that were immunoreactive for insulin, islet amyloid polypeptide, and MAFA. These data, and associated findings (Shapiro et al., 2021), are the first reported evidence of meal-regulated insulin secretion by differentiated stem cells in patients.*No ACR sample was collected, but patients had negative protein on a urine dipstick test. BMI, Body mass index; ACR, albumin-creatinine ratio; MDI, multiple daily injections. ll Clinical and Translational Report
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.