Melanoma is an aggressive neoplasm with increasing incidence that is classified by the NCI as a recalcitrant cancer, i.e., a cancer with poor prognosis, lacking progress in diagnosis and treatment. In addition to conventional therapy, melanoma treatment is currently based on targeting the BRAF/MEK/ERK signaling pathway and immune checkpoints. As drug resistance remains a major obstacle to treatment success, advanced therapeutic approaches based on novel targets are still urgently needed. We reasoned that the base excision repair enzyme thymine DNA glycosylase (TDG) could be such a target for its dual role in safeguarding the genome and the epigenome, by performing the last of the multiple steps in DNA demethylation. Here we show that TDG knockdown in melanoma cell lines causes cell cycle arrest, senescence, and death by mitotic alterations; alters the transcriptome and methylome; and impairs xenograft tumor formation. Importantly, untransformed melanocytes are minimally affected by TDG knockdown, and adult mice with conditional knockout of Tdg are viable. Candidate TDG inhibitors, identified through a high-throughput fluorescence-based screen, reduced viability and clonogenic capacity of melanoma cell lines and increased cellular levels of 5-carboxylcytosine, the last intermediate in DNA demethylation, indicating successful on-target activity. These findings suggest that TDG may provide critical functions specific to cancer cells that make it a highly suitable anti-melanoma drug target. By potentially disrupting both DNA repair and the epigenetic state, targeting TDG may represent a completely new approach to melanoma therapy.
El artículo seleccionado no se encuentra disponible por ahora a texto completo por no haber sido facilitado todavía por el investigador a cargo del archivo del mismo.
El artículo seleccionado no se encuentra disponible por ahora a texto completo por no haber sido facilitado todavía por el investigador a cargo del archivo del mismo.
We outline a simple approach involving instrument setup and calibration for the analysis of Hoechst dye 33342-loading in human cell lines for exploring heterogeneity in dye efflux efficiency and the status of side population (SP) A549 lung cancer cells. Dual excitation 488 nm/multiline UV (351-364 nm) flow cytometry was used to confirm ABCG2-specific inhibition of dye efflux using Fumitremorgin C. Transporter gene expression, assayed by qRT-PCR, confirmed higher expression of ABCG2 versus ABCB1, reiterated in a cloned subline. Coexpression of aldehyde dehydrogenase genes ranked as aldehyde dehydrogenase class 1A1 (ALDH1A1) [ ALDH3A1 [ ALDH3, relative expression of all genes was again reiterated in a cloned subline. Permeabilized cells were used to create red:violet (660:405 nm Em wavelengths) ratiometric references for mapping temporal changes in Hoechst 33342-DNA fluorescence in live cells. A live cell ''kinetic SP gate'' tracked progressive dye loading of the whole population and coapplication of the far red ([695 nm wavelength) fluorescing dye DRAQ7 enabled viable cell gating. Kinetic gating revealed a continuum for dye accumulation suggesting that SP enumeration is critically dependent upon the nonlinear relationship of the spectral shift with progressive dye-DNA binding and thus requires accurate definition. To this end, permeabilized cell reference samples permit reproducible instrument setup, guide gate boundaries for SP and compromised cells, and offer a simple means of comparing SP enumeration across laboratory sites/platforms. Our approach reports the dynamic range for the spectral shift, revealing noninformative staining conditions and explaining a source of variability for SP enumeration. We suggest that live cell kinetic sorting of all cells with the same dye:DNA load but with differences in efflux capacity can be used to explore drug resistance capability without prejudice. The SP phenotype should be regarded as a kinetic parameter and not a fixed characteristic-critical for functional assay design and the interpretation of heterogeneity. ' 2012 International Society for Advancement of Cytometry
Alchemix is an exemplar of a class of anthraquinone with efficacy against multidrug resistant tumors. We have explored further the mechanism of action of alchemix and investigated the effect of extending its side arm bearing the alkylating functionality with regard to DNA binding and activity against multidrug resistant cancer cells. Increasing the distance between the intercalating chromophore and the alkylating functionality of ICT2901 (propyl), ICT2902(butyl) and ICT2903 (pentyl), led to a higher number of DNA alkylation sites, more potent topoisomerase II inhibition and generated more apoptotic and necrotic cells when analysed in p53-proficient HCT116 cells. Intriguingly, alchemix, the compound with the shortest distance between its intercalative chromophore and alkylating functionality (ethyl), did not conform to this SAR. A different toxicity pattern against DNA repair defective CHO cell lines as well as arrest of cells in G1 supports a somewhat distinct mode of action by alchemix compared with its analogues. Importantly, both alchemix and ICT2901 demonstrated greater cytotoxic activity against anthraquinone-resistant MCF-7/adr cells than wild-type MCF-7 cells. Subtle synthetic modification in this anthraquinone series has led to significant changes to the stability of DNA-compound complexes and cellular activity. Given that the failure of chemotherapy in the clinic is often associated with MDR, the results of both alchemix and ICT2901 represent important advances towards improved therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.