Water contamination by mercury and chromium has a direct effect in human health. A promising technology to remove heavy metals by membrane filtration is the use of hybrid membranes produced with whey protein fibrils (WPF) and activated carbon (AC). In this study, the best conditions to produce WPF by heat treatment were determined to maximize the removal of mercury and chromium from water using a central composed design. The results indicated that the best conditions to prepare WPF were 74 °C, 7 h and 3.8% of whey protein with adsorption capacities of 25 and 18 mg/g and removal efficiencies of 81 and 57% for mercury and chromium, respectively. WPF and AC were used to prepare a hybrid membrane that was characterized using transmission electron microscopy, atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and Brunauer–Emmett–Teller surface area measurements. Batch filtration experiments were performed with the hybrid membrane for chromium and mercury removal at 25, 50 and 100 mg/L to determine its adsorption capacities. A high performance of the hybrid membrane was demonstrated removing efficiently mercury and chromium from water, thus supporting more than ten filtration cycles.
Three Streptomyces strains isolated from Guaviare sediments (Colombia, South America) with cytotoxic activity against prostate cancer (PC3), breast cancer (MDA-MB-231), and lung cancer (A549) line cells were studied. The present investigation reveals the enhancement of the cytotoxic activity evaluating different values of pH, carbon sources (sucrose, glucose, xylose, maltose, and starch), and nitrogen sources (malt extract, yeast extract, meat extract, peptone, and potassium nitrate). Based on the response surface methodology, the isolates Streptomyces aburaviensis (73) had the maximum activity for lung cancer (IC50= 25.00 ± 1.86 ppm) with 4% of yeast extract, 3% of starch, and a pH value of 7. Streptomyces gramineus (386) had the maximum activity against prostate cancer (IC50= 6.14 ± 2.07 ppm) with 5% of malt extract, 3% of glucose, and a pH value of 6. Finally, Streptomyces psammoticus (519) had the maximum activity against breast cancer (IC50= 35.53 ± 2.71 ppm) with 1% of yeast extract, 4% of starch, and a pH 8. The results suggest that the ethyl acetate extracts from isolates Streptomyces aburaviensis (73), Streptomyces gramineus (386), and Streptomyces psammoticus (519) have a potential for use in pharmaceuticals as cytotoxic agents.
Chromium pollution represents a worldwide concern due to its high toxicity and bioaccumulation in organisms and ecosystems. An interesting material to remove metal ions from water is a whey-protein-based material elaborated by electrospinning, which is an emerging method to produce adsorbent membranes with diverse applications. The aim of this study was to prepare an adsorbent membrane of whey protein isolate (WPI) and polycaprolactone (PCL) by electrospinning to remove chromium ions from water. The adsorbent membrane was synthesized by a central composed design denaturing WPI using 2-Mercaptoethanol and mixing it with PCL to produce electrospun nanofibers. The adsorbent membrane was characterized by denaturation, Scanning Electron Microscope, Fourier-Transform Infrared Spectroscopy, Contact Angle, Thermogravimetric Analysis, and X-Ray Photoelectron Spectrometry. The adsorption properties of this membrane were assessed in the removal of chromium. The removal performance of the membrane was enhanced by an increase in temperature showing an endothermic adsorption process. The adsorption process of chromium ions onto the nanofiber membrane followed the Sips adsorption isotherm, while the adsorption kinetics followed a pseudo-second kinetics where the maximum adsorption capacity was 31.0 mg/g at 30 °C and pH 2. This work provides a novel method to fabricate a hybrid membrane with amyloid-type fibrils of WPI and PCL, which is a promising adsorbent to remove heavy metal ions from water.
Purpose: To optimize the L-asparaginase activity of Actinobacteria isolated from Guaviare river sediments in Colombia. Methods: Actinobacterial strains were evaluated for their L-asparaginase activity using phenol red plates and Nessler's assays. Strains with L-asparaginase activity were identified based on 16S ribosomal rRNA sequencing, and a central composite design was used to study nutritional and growth factors that could improve L-asparaginase activity. L-asparaginase protein was detected using western blotting and the cytotoxicity of L-asparaginase preparations was evaluated against MDA-MB231 and L929 cell lines. Results: Kitasatospora atroaurantiaca, Streptomyces griseoluteus, and Streptomyces panaciradicis were cultured in medium with lactose as a carbon source and a combination of asparagine and malt extract as nitrogen sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.