We report a case series of five patients affected by SARS‐CoV‐2 who developed neurological symptoms, mainly expressing as polyradiculoneuritis and cranial polyneuritis in the 2 months of COVID‐19 pandemic in a city in the northeast of Italy. A diagnosis of Guillain‐Barré syndrome was made on the basis of clinical presentation, cerebrospinal fluid analysis, and electroneurography. In four of them, the therapeutic approach included the administration of intravenous immunoglobulin (0.4 g/kg for 5 days), which resulted in the improvement of neurological symptoms. Clinical neurophysiology revealed the presence of conduction block, absence of F waves, and in two cases a significant decrease in amplitude of compound motor action potential compound muscle action potential (cMAP). Four patients presented a mild facial nerve involvement limited to the muscles of the lower face, with sparing of the forehead muscles associated to ageusia. In one patient, taste assessment showed right‐sided ageusia of the tongue, ipsilateral to the mild facial palsy. In three patients we observed albuminocytological dissociation in the cerebrospinal fluid, and notably, we found an increase of inflammatory mediators such as the interleukin‐8. Peripheral nervous system involvement after infection with COVID‐19 is possible and may include several signs that may be successfully treated with immunoglobulin therapy.
BackgroundResting-state functional connectivity (FC) MRI has widely been used to understand migraine pathophysiology and to identify an imaging marker of the disorder. Here, we review what we have learned from FC studies.MethodsWe performed a literature search on the PubMed website for original articles reporting data obtained from conventional resting-state FC recording in migraine patients compared with healthy controls or during and outside of migraine attacks in the same patients.ResultsWe found 219 articles and included 28 in this review after screening for inclusion and exclusion criteria. Twenty-five studies compared migraine patients with healthy controls, whereas three studies investigated migraine patients during and outside of attacks. In the studies of interictal migraine more alterations of more than 20 FC networks (including amygdala, caudate nucleus, central executive, cerebellum, cuneus, dorsal attention network, default mode, executive control, fronto-parietal, hypothalamus, insula, neostriatum, nucleus accumbens, occipital lobe, periaqueductal grey, prefrontal cortex, salience, somatosensory cortex I, thalamus and visual) were reported. We found a poor level of reproducibility and no migraine specific pattern across these studies.ConclusionBased on the findings in the present review, it seems very difficult to extract knowledge of migraine pathophysiology or to identify a biomarker of migraine. There is an unmet need of guidelines for resting-state FC studies in migraine, which promote the use of homogenous terminology, public availability of protocol and the a priori hypothesis in line with for instance randomized clinical trial guidelines.
Background The first years of relapsing-remitting multiple sclerosis (RRMS) constitute the most vulnerable phase for the progression of cognitive impairment (CImp), due to a gradual decrease of compensatory mechanisms. In the first 10 years of RRMS, the temporal volumetric changes of deep gray matter structures must be clarified, since they could constitute reliable cognitive biomarkers for diagnostic, prognostic, and therapeutic purposes. Methods Forty-five cognitively asymptomatic patients with RRMS lasting ≤ 10 years, and with a brain MRI performed in a year from the neuropsychological evaluation (Te-MRI), were included. They performed the Brief International Cognitive Assessment battery for MS. Thirty-one brain MRIs performed in the year of diagnosis (Td-MRI) and 13 brain MRIs of age-and sex-matched healthy controls (HCs) were also included in the study. The relationships between clinical features, cognitive performances, and Te-and Td-MRI volumes were statistically analyzed. Results Cognitively preserved (CP) patients had significantly increased Td-L-putamen (P = 0.035) and Td-R-putamen volume (P = 0.027) with respect to cognitively impaired (CI) ones. CI patients had significantly reduced Te-L-hippocampus (P = 0.019) and Te-R-hippocampus volume (P = 0.042) compared, respectively, with Td-L-hippocampus and Td-R-hippocampus volume. Td-L-putamen volume (P = 0.011) and Te-L-hippocampus volume (P = 0.023) were independent predictors of the Symbol Digit Modalities Test score in all patients (r2 = 0.31, F = 6.175, P = 0.001). Conclusion In the first years of RRMS, putamen hypertrophy and hippocampus atrophy could represent promising indices of cognitive performance and reserve, and become potentially useful tools for diagnostic, prognostic, and therapeutic purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.