Multiple endocrine neoplasia type 1 (MEN1) is a hereditary syndrome predisposing to many endocrine and neuroendocrine tumors (NET). Conventional imaging (CI) cannot provide satisfactory results for all the different types of MEN1-related tumors. Objective of this prospective observational study was to evaluate the role of (68)Ga-DOTATATE PET/CT in MEN1 compared to CI. Diagnostic performance of (68)Ga-DOTATATE PET/CT for the detection of NET was evaluated as well as the prognostic role of SUVmax. Eighteen patients with genetically confirmed MEN1 were evaluated by (68)Ga-DOTATATE PET/CT, endoscopic ultrasounds, multidetector-row computed tomography, magnetic resonance imaging, and hormone/markers serum measurements. Four MEN1-related tumor sites (pancreas, pituitary, parathyroids, adrenals) were considered. Sensitivity and specificity of (68)Ga-DOTATATE PET/CT for the detection of NET were calculated. There was (68)Ga-DOTATATE PET/CT uptake in 11/11 patients with pancreatic lesions, in 9/12 with pituitary adenoma, in 5/15 with parathyroid enlargements, and in 5/7 with adrenal lesions. (68)Ga-DOTATATE PET/CT showed sensitivity and specificity of 100 and 100 % in pancreas, 75 and 83 % in pituitary, 28 and 100 % in parathyroids, and 62.5 and 100 % in adrenals, respectively. Compared with CI, no significant difference in sensitivity for pancreas, pituitary, and adrenals was found, while CI had a better sensitivity for parathyroids (p = 0.002). On the ROC analysis, progression of pancreatic lesions was significantly associated to SUVmax <12.3 (p < 0.05). (68)Ga-DOTATATE PET/CT is greatly helpful in the work-up of MEN1 providing a panoramic view of MEN1-related lesions. There is also a prognostic role of (68)Ga-PET in patients with MEN1-pancreatic lesions.
All DOTA-conjugated peptides showed high receptor binding and internalization properties and appear suitable for further characterization, as described in other articles of this issue.
Tenarad RIT is effective in chemorefractory HL and resulted in objective responses or clinical benefit in the majority of patients. Toxicity was acceptable despite the high load of prior treatments, previous ASCT and multiple Tenarad administrations. Further studies are planned to define the most effective schedule for this type of RIT in HL patients.
The aim of this work is to compare [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 PET/CT as imaging agents in patients with prostate cancer (PCa). Comparisons were made by evaluating times and costs of the radiolabeling process, imaging features including pharmacokinetics, and impact on patient management. The analysis of advantages and drawbacks of both radioligands might help to make a better choice based on firm data. For [68Ga]Ga-PSMA-11, the radiochemical yield (RCY) using a low starting activity (L, average activity of 596.55 ± 37.97 MBq) was of 80.98 ± 0.05%, while using a high one (H, average activity of 1436.27 ± 68.68 MBq), the RCY was 71.48 ± 0.04%. Thus, increased starting activities of [68Ga]-chloride negatively influenced the RCY. A similar scenario occurred for [18F]PSMA-1007. The rate of detection of PCa lesions by Positron Emission Tomography/Computed Tomography (PET/CT) was similar for both radioligands, while their distribution in normal organs significantly differed. Furthermore, similar patterns of biodistribution were found among [18F]PSMA-1007, [68Ga]Ga-PSMA-11, and [177Lu]Lu-PSMA-617, the most used agent for RLT. Moreover, the analysis of economical aspects for each single batch of production corrected for the number of allowed PET/CT examinations suggested major advantages of [18F]PSMA-1007 compared with [68Ga]Ga-PSMA-11. Data from this study should support the proper choice in the selection of the PSMA PET radioligand to use on the basis of the cases to study.
Background
Prostate-specific membrane antigen is overexpressed in prostate cancer and it is considered a good target for positron emission tomography/computed tomography imaging of primary cancer and recurrent/metastatic disease, as well as for radioligand therapy. Different PSMA-analogues labeled with [68Ga]gallium have been investigated, showing excellent imaging properties; however, only small amounts can be produced for each radiolabeling. Recently, a [18F]fluoride labeled PSMA-inhibitor, [18F]PSMA-1007, has been introduced, and it has ensured large-scale productions, overcoming this limitation of [68Ga]PSMAs. In this study, PSMA-1007 has been labeled with low (A), medium (B) and high (C) starting activities of [18F]fluoride, in order to verify if radiochemical yield, radiochemical purity and stability of [18F]PSMA-1007 were affected. These parameters have been measured in sixty-five consecutive batches. In addition, the estimation of [18F]PSMA-1007 production costs is provided.
Results
The radiochemical yield for low and medium activities of [18F]fluoride was 52%, while for the high one it decreased to 40%. The radiochemical purity was 99% for all three activities. [18F]PSMA-1007 did not show radiolysis up to 8 h after the end of synthesis, confirming that the radiopharmaceutical is stable and suitable to perform diagnostic studies in humans for a long period of time after the end of radiolabeling. Furthermore, radiochemical stability was demonstrated in fetal bovine serum at 4 °C and 37 °C for 120′.
Conclusions
A starting activity of [18F]fluoride of 90 GBq (B) seems to be the best option enabling a final amount of about of 50 GBq of [18F]PSMA-1007, which is promising as it allows to: (a) perform a large number of scans, and/or (b) supply the radiopharmaceutical to any peripheral diagnostic centers in need.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.