BackgroundRheumatoid arthritis (RA) is an inflammatory autoimmune disease of unknown etiology, affecting mainly the joint but also other tissues. RA patients usually present weakness and muscle atrophy, nonarticular manifestations of the disease. Although causing great impact, the understanding of muscle atrophy, its development, and the mechanisms involved is still very limited. The objective of this study is to evaluate the development of muscle atrophy in skeletal muscle of a murine model of arthritis.MethodsThe experimental murine model of collagen-induced arthritis (CIA) was used. DBA/1J mice were randomly divided into three groups: control (CO, n = 25), sham arthritis (SA, n = 25), and arthritis (CIA, n = 28), analyzed in different time points: 25, 35, and 45 days after the induction of arthritis. The arthritis development was followed by clinical scores and hind paw edema three times a week. The spontaneous exploratory locomotion and weight were evaluated weekly. In all time points, serum was collected before the death of the animals for cytokine analysis, and myofiber cross-sectional areas (CSA) of gastrocnemius (GA) and tibialis anterior (TA) skeletal muscles were evaluated.ResultsThe clinical parameters of arthritis progressively increased in CIA in all experimental times, demonstrating the greatest difference from other groups at 45 days after induction (clinical score: CO, 00 ± 00; SA, 1.00 ± 0.14; CIA, 3.28 ± 0.41 p > 0.05). The CIA animals had lower weights during all the experimentation periods with a difference of 6 % from CO at 45 days (p > 0.05). CIA animals also demonstrated progressive decrease in distance walked, with a reduction of 54 % in 35 and 74 % at 45 days. Cytokine analysis identified significant increase in IL-6 serum levels in CIA than CO and SA in all experimental times. CSA of the myofiber of GA and TA was decreased 26 and 31 % (p > 0.05) in CIA in 45 days after the induction of disease, respectively. There was significant and inverse correlation between the disease clinical score and myofiber CSA in 45 days (GA: r = −0.71; p = 0.021).ConclusionOur results point to a progressive development of muscle wasting, with premature onset arthritis. These observations are relevant to understand the development of muscle loss, as well as for the design of future studies trying to understand the mechanisms involved in muscle wasting. As far as we are concerned, this is the first study to evaluate the relation between disease score and muscle atrophy in a model of arthritis.Electronic supplementary materialThe online version of this article (doi:10.1007/s13539-013-0102-1) contains supplementary material, which is available to authorized users.
A BS TRACT: Objectives: Voice tremor is a common movement disorder that manifests as involuntary oscillations of laryngeal muscles, leading to rhythmic alterations in voice pitch and loudness. Differential diagnosis of essential tremor of voice (ETv) is often challenging and includes dystonic tremor of voice (DTv), which is characterized by irregular, isometric contractions of laryngeal muscles during dystonic activity. Although clinical characteristics of voice tremor are well described, the pathophysiology underlying its heterogeneous phenomenology remains limited. Methods: We used a multimodal approach of functional magnetic resonance imaging for assessment of brain activity during symptomatic speech production, highresolution magnetic resonance imaging for the examination of cortical thickness and gray matter volume, and diffusion-weighted imaging for evaluation of white matter integrity to identify disorder-specific neural alterations and their relationships with the symptomatology of ETv and DTv. Results: We found a broad overlap between cortical alterations in ETv and DTv, involving sensorimotor regions responsible for the integration of multisensory information during speech production, such as primary sensorimotor, inferior/superior parietal, and inferior temporal cortices. In addition, ETv and DTv showed unique patterns of abnormalities in regions controlling speech motor preparation, which were localized in the cerebellum in ETv and the premotor cortex, insula, and superior temporal gyrus in DTv. Neural alterations in superior parietal and inferior temporal cortices were correlated with ETv severity, whereas changes in the left premotor cortex were associated with DTv severity. Conclusions: Our findings point to the pathophysiological spectrum underlying ETv and DTv and favor a more heterogeneous rather than dichotomous diagnostic classification of these voice tremor disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.