Proton exchange membranes (PEMs) have various applications, such as in electrolysis technology for hydrogen generation, vanadium flow batteries for energy storage, and fuel cells for energy conversion. To increase PEM performance and expand the range of PEM applications, the underlying transport mechanisms of PEMs need to be understood. Mesoporous silica thin films are versatile model materials for proton transport investigation and are prepared with a pore size of ≈12 nm and film thickness of ≈565 nm by evaporation‐induced self‐assembly, providing an ordered, mesoporous, rigid matrix that allows us to deduce the structure‐property relationship with respect to proton conductivity. Different amounts of sulfonic acid‐bearing groups are introduced into the mesopores using the grafting‐through polymerization of sulfopropylmethacrylate. The relationship between proton transport and the pH of the surrounding solution in poly‐sulfopropylmethacrylate‐functionalized mesopores is investigated using electrochemical impedance spectroscopy. The proton conductivity is found to depend on both the proton concentration in solution and the number of proton transporting groups inside the pore, indicating the major role of charge regulation and the confinement effect on proton transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.