T his paper shows how many types of combinatorial problems can be embedded in continuous space and solved as nonconvex optimization problems. If the objective function and the constraints are linear, problems of this kind can be formulated as linear complementarity problems. An algorithm is presented to solve this type of problem and indicate its convergence properties. Computational comparisons are carried out using general solution codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.