The goal of this work is to perform parameter estimation by comparing a Reduced Order Model (ROM), built using Proper Orthogonal Decomposition (POD) and Gaussian Process Regression (GPR), with a Sparse Sensing (SpS) model. This framework is demonstrated by selecting the optimal set of the Partially Stirred Reactor (PaSR) coefficients used in the modelling of the Cabra flame. The Cabra flame is a methane flame in a vitiated coflow, consisting of the combustion products of hydrogen and air. The PaSR model necessitates the knowledge of 4 scalar coefficients, which are unknown a priori. To select the optimal set of coefficients, 57 simulations were performed with a different combination of PaSR coefficients. These simulations were used to build the ROM via POD and GPR. To compare the numerical solution with the experimental data, the SpS technique has been employed. SpS is a framework that leverages dimensionality reduction to predict the state of the system given few measurements. The optimal coefficients have been estimated by applying an optimization algorithm to the ROM, using the solution provided by SpS as target. Finally, the data assimilation framework has been used to provide a solution with lower uncertainty bounds. The results show that this framework is able to estimate the optimal set of coefficients, and it can be used to identify residual sources of uncertainty in the numerical model by highlighting the difference between the optimized model and the experimental values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.