We present 11 detections of FRB 121102 in ∼3 h of observations during its ‘active’ period on the 10th of 2019 September. The detections were made using the newly deployed MeerTRAP system and single pulse detection pipeline at the MeerKAT radio telescope in South Africa. Fortuitously, the Nançay radio telescope observations on this day overlapped with the last hour of MeerKAT observations and resulted in four simultaneous detections. The observations with MeerKAT’s wide band receiver, which extends down to relatively low frequencies (900–1670 MHz usable L-band range), have allowed us to get a detailed look at the complex frequency structure, intensity variations, and frequency-dependent sub-pulse drifting. The drift rates we measure for the full-band and sub-banded data are consistent with those published between 600 and 6500 MHz with a slope of −0.147 ± 0.014 ms−1. Two of the detected bursts exhibit fainter ‘precursors’ separated from the brighter main pulse by ∼28 and ∼34 ms. A follow-up multi-telescope campaign on the 6th and 8th of 2019 October to better understand these frequency drifts and structures over a wide and continuous band was undertaken. No detections resulted, indicating that the source was ‘inactive’ over a broad frequency range during this time.
We have observed a complex and continuous change in the integrated pulse profile of PSR B2217+47, manifested as additional components trailing the main peak. These transient components are detected over 6 years at 150 MHz using the LOw Frequency ARray (LOFAR), but they are not seen in contemporaneous Lovell observations at 1.5 GHz. We argue that propagation effects in the ionized interstellar medium (IISM) are the most likely cause. The putative structures in the IISM causing the profile variation are roughly half-way between the pulsar and the Earth and have transverse radii R ∼ 30 AU. We consider different models for the structures. Under the assumption of spherical symmetry, their implied average electron density is n e ∼ 100 cm −3 . Since PSR B2217+47 is more than an order of magnitude brighter than the average pulsar population visible to LOFAR, similar profile variations would not have been identified in most pulsars, suggesting that subtle profile variations in low-frequency profiles might be more common than we have observed to date. Systematic studies of these variations at low frequencies can provide a new tool to investigate the proprieties of the IISM and the limits to the precision of pulsar timing.
The radio-emitting neutron star population encompasses objects with spin periods ranging from milliseconds to tens of seconds. As they age and spin more slowly, their radio emission is expected to cease. We present the discovery of an ultra-long period radio-emitting neutron star, PSR J0901−4046 , with spin properties distinct from the known spin and magnetic-decay powered neutron stars. With a spinperiod of 75.88 s, a characteristic age of 5.3 Myr, and a narrow pulse duty-cycle, it is uncertain how radio emission is generated and challenges our current understanding of how these systems evolve. The radio emission has unique spectro-temporal properties such as quasi-periodicity and partial nulling that provide important clues to the emission mechanism. Detecting similar sources is observationally challenging, which implies a larger undetected population. Our discovery establishes the existence of ultra-long period neutron stars, suggesting a possible connection to the evolution of highly magnetized neutron stars, ultra-long period magnetars, and fast radio bursts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.