The hormonal milieu influences immune tolerance and the immune response against viruses and cancer, but the direct effect of androgens on cellular immunity remains largely uncharacterized. We therefore sought to evaluate the effect of androgens on murine and human T cells in vivo and in vitro. We found that murine androgen deprivation in vivo elicited RNA expression patterns conducive to IFN signaling and T-cell differentiation. Interrogation of mechanism showed that testosterone regulates T-helper 1 (Th1) differentiation by inhibiting IL-12-induced Stat4 phosphorylation: in murine models, we determined that androgen receptor binds a conserved region within the phosphatase, Ptpn1, and consequent up-regulation of Ptpn1 then inhibits IL-12 signaling in CD4 T cells. The clinical relevance of this mechanism, whereby the androgen milieu modulates CD4 T-cell differentiation, was ascertained as we found that androgen deprivation reduced expression of Ptpn1 in CD4 cells from patients undergoing androgen deprivation therapy for prostate cancer. Our findings, which demonstrate a clinically relevant mechanism by which androgens inhibit Th1 differentiation of CD4 T cells, provide rationale for targeting androgens to enhance CD4-mediated immune responses in cancer or, conversely, for modulating androgens to mitigate CD4 responses in disorders of autoimmunity.immunomodulation | cancer immunotherapy | prostate neoplasm
The scavenger receptor MARCO mediates macrophage recognition and clearance of pathogens and their polyanionic ligands. However, recent studies demonstrate MARCO expression and function in dendritic cells, suggesting MARCO might serve to bridge innate and adaptive immunity. To gain additional insight into the role of MARCO in dendritic cell activation and function, we profiled transcriptomes of mouse splenic dendritic cells obtained from MARCO deficient mice and their wild type counterparts under resting and activating conditions. In silico analysis uncovered major alterations in gene expression in MARCO deficient dendritic cells resulting in dramatic alterations in key dendritic cell-specific pathways and functions. Specifically, changes in CD209, FCGR4 and Complement factors can have major consequences on DC-mediated innate responses. Notably, these perturbations were magnified following activation with the TLR-4 agonist lipopolysaccharide. To validate our in silico data, we challenged DC‘s with various agonists that recognize all mouse TLRs and assessed expression of a set of immune and inflammatory marker genes. This approach identified a differential contribution of MARCO to TLR activation and validated a major role for MARCO in mounting an inflammatory response. Together, our data demonstrate that MARCO differentially affects TLR-induced DC activation and suggest targeting of MARCO could lead to different outcomes that depend on the inflammatory context encountered by DC.
Identification of novel vaccine targets is critical for the design and advancement of prostate cancer (PCa) immunotherapy. Ideal targets are proteins that are abundant in prostate tumors while absent in extra-prostatic tissues. The fusion of the androgen-regulated TMPRSS2 gene with the ETS transcription factor ERG occurs in approximately 50% of prostate cancer cases and results in aberrant ERG expression. Because expression of ERG is very low in peripheral tissue, we evaluated the suitability of this protein as an antigen target in PCa vaccines. ERG-derived HLA-A*0201-restricted immunogenic epitopes were identified through a 3-step strategy that included in silico, in vitro, and in vivo validation. Algorithms were used to predict potential HLA-A*0201-binding epitopes. High scoring epitopes were tested for binding to HLA-A*0201 using the T2-based stabilization assay in vitro. Five peptides were found to bind HLA-A*0201 and were subsequently tested for immunogenicity in humanized HLA-A*0201 transgenic mice. The in vivo screening identified three immunogenic peptides. One of these peptides, ERG295, overcame peripheral tolerance in HLA-A*0201 mice that expressed prostate restricted ERG. Also, this peptide induced an antigen specific response against ERG-expressing human prostate tumor cells. Finally, tetramer assay showed detectable and responsive ERG295-specific cytotoxic lymphocytes in peripheral blood of HLA-A*0201+ prostate cancer patients. Detection of ERG-specific CTLs in both mice and the blood of prostate cancer patients indicates that ERG-specific tolerance can be overcome. Additionally, these data suggest that ERG is a suitable target antigen for PCa immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.