Documentation of the interacting effects of river regulation and climate on riparian vegetation has typically been limited to small segments of rivers or focused on individual plant species. We examine spatiotemporal variability in riparian vegetation for the Colorado River in Grand Canyon relative to river regulation and climate, over the five decades since completion of the upstream Glen Canyon Dam in 1963. Long-term changes along this highly modified, large segment of the river provide insights for management of similar riparian ecosystems around the world. We analyze vegetation extent based on maps and imagery from eight dates between 1965 and 2009, coupled with the instantaneous hydrograph for the entire period. Analysis confirms a net increase in vegetated area since completion of the dam. Magnitude and timing of such vegetation changes are river stage-dependent. Vegetation expansion is coincident with inundation frequency changes and is unlikely to occur for time periods when inundation frequency exceeds approximately 5%. Vegetation expansion at lower zones of the riparian area is greater during the periods with lower peak and higher base flows, while vegetation at higher zones couples with precipitation patterns and decreases during drought. Short pulses of high flow, such as the controlled floods of the Colorado River in 1996, 2004, and 2008, do not keep vegetation from expanding onto bare sand habitat. Management intended to promote resilience of riparian vegetation must contend with communities that are sensitive to the interacting effects of altered flood regimes and water availability from river and precipitation.
Effects of riparian vegetation on fluvial sediment dynamics depend on morphological traits of the constituent species. Determining the effects of different morphological guilds on sedimentation rates, as influenced by multiple aspects of dam operations, can help identify viable strategies for streamflow and vegetation management to achieve riparian resource goals. Plants of increasing size and branching density or complexity have been found to have greater effects on sedimentation in free‐flowing systems; however, this relationship could differ in regulated rivers. We tested the hypothesis that plant guilds of increasing height and branching complexity would be positively associated with sedimentation rates on 23 sandbars deposited in zones of recirculating flow (eddies) along the Colorado River in Grand Canyon. We used an image‐based vegetation classification and digital elevation models from annual topographic surveys to track associations between six plant morphological guilds and topographic change over 5 years. Vegetation had significant associations with deposition after accounting for geomorphic setting, but the ordinal guild scale was not positively correlated with deposition magnitude. Instead, low‐statured rhizomatous and herbaceous guilds were particularly effective at capturing sediment in the separation zone of sandbars, whereas tall herbs and large shrubs were most effective at capturing sediment in reattachment zones. These nuanced interactions between geomorphic position and morphological guild may be a direct consequence of flow regulation through modifications to physical deposition and erosion processes. Flow regulation may also select for a narrow subset of morphological guilds, reducing the diversity of vegetation feedbacks on sedimentation and emphasizing geomorphic drivers.
A common impact on riparian ecosystem function following river regulation is the expansion and encroachment of riparian plant species in the active river channels and floodplain, which reduces flow of water and suspended sediment between the river, riparian area and upland ecosystems. We characterised riparian plant species occurrence and quantified encroachment within the dam-regulated Colorado River in Grand Canyon, Arizona, USA. We mapped 10 riparian species with high-resolution multispectral imagery and examined effects of river hydrology and geomorphology on the spatial distribution of plant species and open sand. Analysis spanned an image time series from 2002 to 2009 to 2013, a period when plant species and sand were spatially dynamic and operations of Glen Canyon Dam included daily hydro-peaking and small episodic controlled flood releases. Plant species occurrence and encroachment rates varied with hydrology, geomorphology and local species pool.Encroachment was greatest on surfaces frequently inundated by hydro-peaking.Seep willow (Baccharis spp.), tamarisk (Tamarix spp.) and arrowweed (Pluchea sericea) were the primary encroaching woody species. Common reed (Phragmites australis) and horsetail (Equisetum xferrissii) were the primary encroaching herbaceous species. Encroachment composition from 2002 to 2009 was similar to the entire riparian landscape, whereas encroachment from 2009 to 2013 primarily consisted of seep willow and early colonising herbaceous species. Emergence of seep willow and arrowweed after burial by sand deposited by controlled floods indicated that those species were resilient to this form of disturbance. Describing patterns of species encroachment is an important step towards designing flow regimes that favour riparian species and ecosystem functions valued by stakeholders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.