InGaAs lattice-matched to InP was grown by molecular beam epitaxy with randomly distributed TbAs nanoparticles for thermoelectric power generation applications. TbAs:InGaAs is expected to have a large thermoelectric figure of merit, ZT, particularly at high temperatures, owing to energy band alignment between the nanoparticles and their surrounding matrix. Here, the room temperature thermoelectric properties were measured as a function of TbAs concentration, revealing a maximum thermoelectric power factor of 2.38 W/mK2 and ZT of 0.19 with 0.2% TbAs. Trends in the thermoelectric properties closely resemble those found in comparable ErAs:InGaAs nanocomposite materials. However, nanoparticles were not observed by scanning transmission electron microscopy in the highest ZT TbAs:InGaAs sample, unlike the highest ZT ErAs:InGaAs sample (0.2% ErAs) and two higher concentration TbAs:InGaAs samples examined. Consistent with expectations concerning the positioning of the Fermi level in these materials, ZT was enhanced by TbAs incorporation largely due to a high Seebeck coefficient, whereas ErAs provided InGaAs with higher conductivity but a lower Seebeck coefficient than that of TbAs:InGaAs. Thermal conductivity was reduced significantly from that of intrinsic thin-film InGaAs only with TbAs concentrations greater than ∼1.7%.
Articles you may be interested inMolecular beam epitaxy growth of high electron mobility InAs/AlSb deep quantum well structure Effect of the growth temperature and the AlN mole fraction on In incorporation and properties of quaternary IIInitride layers grown by molecular beam epitaxy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.